Lead optimization of a high-throughput screening hit led to the rapid identification of aminopyrimidine ZK 304709, a multitargeted CDK and VEGF-R inhibitor that displayed a promising preclinical profile. Nevertheless, ZK 304709 failed in phase I studies due to dose-limited absorption and high inter-patient variability, which was attributed to limited aqueous solubility and off-target activity against carbonic anhydrases. Further lead optimization efforts to address the off-target activity profile finally resulted in the introduction of a sulfoximine group, which is still a rather unusual approach in medicinal chemistry. However, the sulfoximine series of compounds quickly revealed very interesting properties, culminating in the identification of the nanomolar pan-CDK inhibitor BAY 1000394, which is currently being investigated in phase I clinical trials.
In search of novel antitumor therapies. The natural product indirubin (1) is one of the class of indigo dyes, insoluble in aqueous systems, employed by mankind since the Bronze Age for textile coloring. In 1999 indirubin was reported to be a modest inhibitor of the enzyme CDK2, a key target in the ongoing search for novel antitumor therapies. With the guidance of X‐ray structures, indirubin was transformed to yield novel, soluble, almost colorless, highly potent CDK2 inhibitors that strongly inhibit the growth of the MCF7 tumor cell line in vitro.
The fibroblast growth factor receptor FGFR2 is overexpressed in a variety of solid tumors, including breast, gastric, and ovarian tumors, where it offers a potential therapeutic target. In this study, we present evidence of the preclinical efficacy of BAY 1187982, a novel antibody-drug conjugate (ADC). It consists of a fully human FGFR2 monoclonal antibody (mAb BAY 1179470), which binds to the FGFR2 isoforms FGFR2-IIIb and FGFR2-IIIc, conjugated through a noncleavable linker to a novel derivative of the microtubule-disrupting cytotoxic drug auristatin (FGFR2-ADC). In FGFR2-expressing cancer cell lines, this FGFR2-ADC exhibited potency in the low nanomolar to subnanomolar range and was more than 100-fold selective against FGFR2-negative cell lines. High expression levels of FGFR2 in cells correlated with efficient internalization, efficacy, and cytotoxic effects in vitro. Pharmacokinetic analyses in mice bearing FGFR2-positive NCI-H716 tumors indicated that the toxophore metabolite of FGFR2-ADC was enriched more than 30-fold in tumors compared with healthy tissues. Efficacy studies demonstrated that FGFR2-ADC treatment leads to a significant tumor growth inhibition or tumor regression of cell line-based or patient-derived xenograft models of human gastric or breast cancer. Furthermore, FGFR2 amplification or mRNA overexpression predicted high efficacy in both of these types of in vivo model systems. Taken together, our results strongly support the clinical evaluation of BAY 1187982 in cancer patients and a phase I study (NCT02368951) has been initiated.
X-ray structures from CDK2-aminopyrimidine inhibitor complexes led to the idea to stabilize the active conformation of aminopyrimidine inhibitors by incorporating the recognition site into a macrocyclic framework. A modular synthesis approach that relies on a new late-stage macrocyclization protocol that enables fast and efficient synthesis of macrocyclic aminopyrimidines was developed. A set of structurally diverse derivatives was prepared. Macrocyclic aminopyrimidines were shown to be multitarget inhibitors of CDK1/2 and VEGF-RTKs. In addition, potent antiproliferative activities toward various human tumor cells and a human tumor xenograft model were demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.