The relation between parity-check matrices of quasicyclic (QC) low-density parity-check (LDPC) codes and biadjacency matrices of bipartite graphs supports searching for powerful LDPC block codes. Using the principle of tailbiting, compact representations of bipartite graphs based on convolutional codes can be found. Bounds on the girth and the minimum distance of LDPC block codes constructed in such a way are discussed. Algorithms for searching iteratively for LDPC block codes with large girth and for determining their minimum distance are presented. Constructions based on all-ones matrices, Steiner Triple Systems, and QC block codes are introduced. Finally, new QC regular LDPC block codes with girth up to 24 are given.
Abstract-Convolutional codes over rings have been motivated by phase-modulated signals. Some structural properties of the generator matrices of such codes are presented. Successively stronger notions of invertibility of generator matrices are studied, and a new condition for a convolutional code over a ring to be systematic is given and shown to be equivalent to a condition given by Massey and Mittelholzer. It is shown that a generator matrix that can be decomposed into a direct sum is basic, minimal, and noncatastrophic if and only if all generator matrices for the constituent codes are basic, minimal, and noncatastrophic, respectively. It is also shown that if a systematic generator matrix can be decomposed into a direct sum, then all generator matrices of the constituent codes are systematic, but that the converse does not hold. Some results on convolutional codes over p are obtained.Index Terms-Convolutional codes over rings, direct sum decomposition of rings, proper convolutional codes, systematic convolutional codes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.