Next-generation sequencing (NGS) has enriched the understanding of the human genome. However, homologous or repetitive sequences shared among genes frequently produce dubious alignments and can puzzle NGS mutation analysis, especially for paralogous potassium channels. Potassium inward rectifier (Kir) channels are important to establish the resting membrane potential and regulating the muscle excitability. Mutations in Kir channels cause disorders affecting the heart and skeletal muscle, such as arrhythmia and periodic paralysis. Recently, a susceptibility muscle channelopathy-thyrotoxic periodic paralysis (TPP)-has been related to Kir2.6 channel (KCNJ18 gene). Due to their high nucleotide sequence homology, variants found in the potassium channels Kir2.6 and Kir2.5 have been mistakenly attributable to Kir2.2 polymorphisms or mutations. We aimed at elucidating nucleotide misalignments by performing realignment of whole exome sequencing (WES) and whole genome sequencing (WGS) reads to specific Kir2.2, Kir2.5, and Kir2.6 cDNA sequences using BWA-MEM/GATK pipeline. WES/WGS reads correctly aligned 26.9/43.2, 37.6/31.0, and 35.4/25.8 % to Kir2.2, Kir2.5, and Kir2.6, respectively. Realignment was able to reduce over 94 % of misalignments. No putative mutations of Kir2.6 were identified for the three TPP patients included in the cohort of 36 healthy controls using either WES or WGS. We also distinguished sequences for a single Kir2.2, a single Kir2.5 sequence, and two Kir2.6 isoforms, which haplotypes were named RRAI and QHEV, based on changes at 39, 40, 56, and 249 residues. Electrophysiology records on both Kir2.6_RRAI and _QHEV showed typical rectifying currents. In our study, the reduction of misalignments allowed the elucidation of paralogous gene sequences and two distinct Kir2.6 haplotypes, and pointed the need for checking the frequency of these polymorphisms in other populations with different genetic background.
Neck ventroflexion in cats has different causes; however, the most common is the hypokalemia associated with flaccid paralysis secondary to chronic renal failure. In humans, the most common causes of acute flaccid paralysis are hypokalemia precipitated by thyrotoxicosis and familial forms linked to mutations in sodium, potassium, and calcium channel genes. Here, we describe the sequencing and analysis of skeletal muscle ion channels in Felis catus that could be related to periodic paralyses in humans, contributing to the understanding of the genetic susceptibility to feline neck ventroflexion and paralysis. We studied genomic DNA from eleven cats, including five animals that were hyperthyroid with hypokalemia, although only one presented with muscle weakness, and six healthy control domestic cats. We identified the ion channel ortholog genes KCNJ2, KCNJ12, KCNJ14, CACNA1S and SCN4A in the Felis catus genome, together with several polymorphic variants. Upon comparative alignment with other genomes, we found that Felis catus provides evidence for a high genomic conservation of ion channel sequences. Although we hypothesized that neck ventroflexion in cats could be associated with a thyrotoxic or familial periodic paralysis channel mutation, we did not identify any previously detected human channel mutation in the hyperthyroid cat presenting hypokalemia. However, based on the small number of affected cats in this study, we cannot yet rule out this molecular mechanism. Notwithstanding, hyperthyroidism should still be considered as a differential diagnosis in hypokalemic feline paralysis.
Introduction: Thyroid morphogenesis is a complex process. Inwardly rectifying potassium (Kir) genes play a role in hormone release, cell excitability, pH and K+ homeostasis in many tissues. Objectives: To investigate the thyroid developmental expression of three members, Kir4.1, Kir4.2 and Kir5.1, in mice. To postulate the K+ channel role in thyroid hormone secretion. Material and Methods: Quantitative RT-PCR analysis of Kir4.1, Kir4.2 and Kir5.1 in mice of different stages (E13.5-E18.5). Results: mRNA for Kir4.1, Kir4.2 and Kir5.1 were identified and increased with age in mice. Both Kir4.1 and Kir4.2 genes are better expressed after E16.5. Kir4.2 greatly increases from E13.5 to E16.5 (p ≤ 0.05). Conclusion: Quantitative PCR shows that the mouse thyroid presents increased expression for Kir channels during development. The role of Kir in thyroid morphogenesis and differentiation might be understood in future studies. We speculate that thyroglobulin trafficking might be modulated by Kir4.1/5.1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.