In experimental work, reliable and accurate means of the detection and measurement of hydrophobic bonding are lacking. In the interpretation of the effect of noncovalent interactions upon the thermodynamic behavior of solutes in general and upon the conformation of macromolecules in particular, the so far unsolved question of additivity must be raised: Is the total contribution of various types of noncovalent interactions the sum of the individual contributions of each of them, as determined by composition and spatial arrangement and according to parameters derived from simple model compounds, or do the various interactions perturb each other? The question has been discussed by Ne'methy et al. [211, Tanford 1231, and Wetlaufer et al.1331. It seems that the effects of various functional groups are approximately additive. However in exact quantitative treatments deviations from additivity will have to be considered explicitly. f n 1963, it was found that sterically unhindered esters of cyanic acid, which had previously been considered unobtainable, could be easily prepared from phenols and cyanogen halides. Another synthesis, involving the thermolysis of thiatriazole derivatives, was discovered in 1964. The aryl cyanates in particular have since been found to have many uses as starting materials for the preparation of numerous new classes of compounds [e.g. derivatives of esters of imidocarbonic acid (, etc.], mainly by addition of nucleophilic or I,3-dipolar reactants, or as aids e.g. in the elimination of H 2 0 or H2S or in the transfer of CNgroups.The preparation of true esters ( I ) of cyanic acid, i.e. those in which the organic group is bonded to the oxygen, was a problem that remained unsolved for a very long time. Since cyanic acid always reacted in the is0 form (2b) to give isocyanates (3) [I], attempts were made as early as the second half of the 19th century to synthesize the molecule ( I ) by combination of a component ROwith a component -CN. However, cyanates could not be obtained either by the reaction of esters of hypochlorous acid with cyanides [2,31 or In 1895 it was reported by Nef[91 and by Hantzsch and Mai[lol that the reaction of phenoxides (alkoxides) with cyanogen halides leads only to imidocarbonates( 4 ) and cyanurates ( 5 ) . Though Nef regarded (6) as a n intermediate in the formation of (4), and considered ( 5 ) to result from the decomposition of (4) with elimination of phenol [91, it seems reasonable to assume that the products (4) and (5) are in fact formed by further reaction of an initially formed cyanate.An exception is the reaction of sterically hindered o-substituted phenols with cyanogen chloride, which according to Stroh and Gerber [111 represents the first preparation of true cyanate esters. The expected Angew. Chem. internat. Edit. VoI. 6 (1967) No. 3 [23] E. Mulder, Recueil Trav. chim.
Die bisher als nicht zugiinglich geltenden Cyansliureester sterisch nicht gehinderter Phenole und einiger spezieller Alkohole werden aus diesen Hydroxy-Verbindungen mit Halogencyan nach besonderer Arbeitsweise hergestellt. Durch Trimerisation der Cyanate kommt man zu den entsprechenden Cyanuraten.Die Umsetzung von Phenolen und Alkoholen mit Halogencyan ist Gegenstand einiger Verbffentlichungen aus der zweiten Halfte des vorigen Jahrhunderts 1-5).J. U. N E F~) setzte sich in einer kritischen Betrachtung damit auseinander und konnte nachweisen, daB bei der Umsetzung von Alkoholaten und Phenolaten mit Halogencyan nur Kohlensiiure-dieter-imide und Cyanurslureester als Reaktionsprodukte auftreten. Er widerlegte damit die friiheren Anschauungen, nach denen die Autoren Cyansaureester erhalten zu haben glaubten. Er formulierte die Bildung der Kohlensiiure-diester-imide nach ( 1 ) ; sie kbnnen sich je nach Reaktionsbedingungen in unterschiedlicher Ausbeute zu Cyanursiiuretriarylestern umsetzen (2). VH c RO-C-OR + NaHal VNa 1) R E P RONa + HalCN .-c RO-C-Hal 2 1 + H e A. HANTZSCH und L. M A I~) waren unabhiingig zu den gleichen Ergebnissen wie J. U. NEF gekommen und bestiitigten dessen Angaben. Seither galten Ester der Cyansibre als nicht existent, bis es 1960 R. STROH und H. GERBER*) gelang, einige sterisch gehinderte Phenole in die entsprechenden Cyanate zu iiberfiihren (vgl . 1. c. 9)).Alle genannten Autoren setzten die Komponenten so um, daD das Halogencyan im Reaktionsmedium einen UberschuB Alkohoht bzw. Phenolat vorfand. Im Gegensatz dam vermieden wir einen solchen, indem wir in eine Losung aquivalenter Mengen 1) S.
Bei der Umsetzung von Arylcyansaureestern2.3) mit Carbon-, Thiocarbonund Dithiocarbonsauren bilden sich neben Carbamidsaure-(111) bzw. Thiocarbamidslureestern (VI) die entsprechenden Carbonsaureanhydride bzw. Diacylsulfide; mit Thiocarbonsaureamiden erhalt man Thiocarbamidsaureester und Nitrile. Die aus Cyansaureestern und Thiobenzhydrazid entstehenden Thiobenzhydrazide XI11 gehen sofort unter Abspaltung der entsprechenden Hydroxyl-Komponente in 2-Amino-5-phenyl-l.3.4-thiadiazol (XIV) iiber. Hydroxamsauren werden durch Cyansaureester dehydratisiert und bilden O-Carbamoyl-hydroxamsauren (XVIII). Amidoxime dagegen addieren ein Mol. Cyansaureester zu 0-[Aryloxy-carbimidoyll-amidoximen (XXII).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.