Abstract. WIRA is a ground-based microwave Doppler spectroradiometer specifically designed for the measurement of profiles of horizontal wind in the upper stratosphere and lower mesosphere region where no other continuously running measurement technique exists. A proof of principle has been delivered in a previous publication. A technical upgrade including a new high-frequency amplifier and sideband filter has improved the signal to noise ratio by a factor of 2.4. Since this upgrade the full horizontal wind field comprising zonal and meridional wind profiles is continuously measured. A completely new retrieval based on optimal estimation has been set up. Its characteristics are detailed in the present paper.Since the start of the routine operation of the first prototype in September 2010, WIRA has been measuring at four different locations at polar, mid-and tropical latitudes (67 • 22 N/26 • 38 E, 46 • 57 N/7 • 26 E, 43 • 56 N/5 • 43 E and 21 • 04 S/55 • 23 E) for time periods between 5.5 and 11 months. The data presented in this paper are daily average wind profiles with typical uncertainties and resolutions of 10 to 20 m s −1 and 10 to 16 km, respectively. A comparison between the data series from WIRA and European Centre for Medium-Range Weather Forecasts (ECMWF) model data revealed agreement within 10 % in the stratospheric zonal wind. The meridional wind profiles agree within their error bars over the entire sensitive altitude range of WIRA. However, significant differences in the mesospheric zonal wind speed of up to 50 % have been found.
High-resolution, ground-based and independent observations including co-located wind radiometer, lidar stations, and infrasound instruments are used to evaluate the accuracy of general circulation models and data-constrained assimilation systems in the middle atmosphere at northern hemisphere midlatitudes. Systematic comparisons between observations, the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analyses including the recent Integrated Forecast System cycles 38r1 and 38r2, the NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalyses, and the free-running climate Max Planck Institute-Earth System Model-Low Resolution (MPI-ESM-LR) are carried out in both temporal and spectral domains. We find that ECMWF and MERRA are broadly consistent with lidar and wind radiometer measurements up to~40 km. For both temperature and horizontal wind components, deviations increase with altitude as the assimilated observations become sparser. Between 40 and 60 km altitude, the standard deviation of the mean difference exceeds 5 K for the temperature and 20 m/s for the zonal wind. The largest deviations are observed in winter when the variability from large-scale planetary waves dominates. Between lidar data and MPI-ESM-LR, there is an overall agreement in spectral amplitude down to 15-20 days. At shorter time scales, the variability is lacking in the model by~10 dB. Infrasound observations indicate a general good agreement with ECWMF wind and temperature products. As such, this study demonstrates the potential of the infrastructure of the Atmospheric Dynamics Research Infrastructure in Europe project that integrates various measurements and provides a quantitative understanding of stratosphere-troposphere dynamical coupling for numerical weather prediction applications.
Abstract. We report on the wind radiometer WIRA, a new ground-based microwave Doppler-spectro-radiometer specifically designed for the measurement of middleatmospheric horizontal wind by observing ozone emission spectra at 142.17504 GHz. Currently, wind speeds in five levels between 30 and 79 km can be retrieved which makes WIRA the first instrument able to continuously measure horizontal wind in this altitude range. For an integration time of one day the measurement error on each level lies at around 25 m s −1 . With a planned upgrade this value is expected to be reduced by a factor of 2 in the near future. On the altitude levels where our measurement can be compared to wind data from the European Centre for Medium-Range Weather Forecasts (ECMWF) very good agreement in the long-term statistics as well as in short time structures with a duration of a few days has been found.WIRA uses a passive double sideband heterodyne receiver together with a digital Fourier transform spectrometer for the data acquisition. A big advantage of the radiometric approach is that such instruments can also operate under adverse weather conditions and thus provide a continuous time series for the given location. The optics enables the instrument to scan a wide range of azimuth angles including the directions east, west, north, and south for zonal and meridional wind measurements. The design of the radiometer is fairly compact and its calibration does not rely on liquid nitrogen which makes it transportable and suitable for campaign use. WIRA is conceived in a way that it can be operated remotely and does hardly require any maintenance.In the present paper, a description of the instrument is given, and the techniques used for the wind retrieval based on the determination of the Doppler shift of the measured atmospheric ozone emission spectra are outlined. Their reliability was tested using Monte Carlo simulations. Finally, a time series of 11 months of zonal wind measurements over Bern (46 • 57 N, 7 • 26 E) is presented and compared to ECMWF wind data.
This paper reviews recent progress toward understanding the dynamics of the middle atmosphere in the framework of the Atmospheric Dynamics Research InfraStructure in Europe (ARISE) initiative. The middle atmosphere, integrating the stratosphere and mesosphere, is a crucial region which influences tropospheric weather and climate. Enhancing the understanding of middle atmosphere dynamics requires improved measurement of the propagation and breaking of planetary and gravity waves originating in the lowest levels of the atmosphere. Inter-comparison studies have shown large discrepancies between observations and models, especially during unresolved disturbances such as sudden stratospheric warmings for which model accuracy is poorer due to a lack of observational constraints. Correctly predicting the variability of the middle atmosphere can lead to improvements in tropospheric weather forecasts on timescales of weeks to season. The ARISE project integrates different station networks providing observations from ground to the lower thermosphere, including the infrasound system developed for the Comprehensive Nuclear-Test-Ban Treaty verification, the Lidar Network for the Detection of Atmospheric Composition Change, complementary meteor radars, wind radiometers, ionospheric sounders and satellites. This paper presents several examples which show how multi-instrument observations can provide a better description of the vertical dynamics structure of the middle atmosphere, especially during large disturbances such as gravity waves activity and stratospheric warming events. The paper then demonstrates the interest of ARISE data in data assimilation for weather forecasting and re-analyzes the determination of dynamics evolution with climate change and the monitoring of atmospheric extreme events which have an atmospheric signature, such as thunderstorms or volcanic eruptions.
Abstract. Ground-based microwave wind radiometry provides a method to measure horizontal wind speeds at altitudes between 35 and 75 km as has been shown by various previous studies. No other method is capable of continuously delivering wind measurements in this altitude region. As opposed to lidar systems, microwave radiometers operate autonomously and independent of daylight and clouds.In this paper, we present the WIRA-C (Wind Radiometer for Campaigns) instrument that observes the 142.17504 GHz rotational transition line of ozone with a high spectral resolution using a low noise single side band heterodyne receiver. Because the emitting molecules are drifting with the wind, the line is Doppler shifted. Together with the pressure broadening effect, this allows the retrieval of altitude resolved wind profiles.The novel WIRA-C instrument represents the newest development in microwave wind radiometry and implements many improvements over its predecessor, the WIRA instrument. The main improvements include the compact structure, lower noise and an advanced retrieval setup. This paper describes the instrument and the data processing with a focus on the retrieval that takes into account a three-dimensional atmosphere and has never been used in ground-based radiometry before. The retrieval yields profiles of horizontal wind speeds with a 12 h time resolution and a vertical resolution of 10 km for zonal and 10 to 15 km for meridional wind speeds. We give an error estimate that accounts for the thermal noise on the measured spectra and additionally estimate systematic errors using Monte Carlo methods.WIRA-C has been continuously measuring horizontal wind speeds for 1 year at the Maïdo observatory on Réunion (21.4° S, 55.9° E). We present the time series of this campaign and compare our measurements to model data from the European Centre for Medium-range Weather Forecasts (ECMWF) and coincident measurements of the co-located Rayleigh–Mie Doppler wind lidar. We find a good agreement between our measurements and the ECMWF operational analysis for the time series, where many features are present in both datasets. The wind profiles of the coincident WIRA-C and lidar observations are consistent and agree within their respective uncertainties for the lidar measurements with long integration times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.