In normal hearing (NH), the perception of the gender of a speaker is strongly affected by two anatomically related vocal characteristics: the fundamental frequency (F0), related to vocal pitch, and the vocal tract length (VTL), related to the height of the speaker. Previous studies on gender categorization in cochlear implant (CI) users found that performance was variable, with few CI users performing at the level of NH listeners. Data collected with recorded speech produced by multiple talkers suggests that CI users might rely more on F0 and less on VTL than NH listeners. However, because VTL cannot be accurately estimated from recordings, it is difficult to know how VTL contributes to gender categorization. In the present study, speech was synthesized to systematically vary F0, VTL, or both. Gender categorization was measured in CI users, as well as in NH participants listening to unprocessed (only synthesized) and vocoded (and synthesized) speech. Perceptual weights for F0 and VTL were derived from the performance data. With unprocessed speech, NH listeners used both cues (normalized perceptual weight: F0=3.76, VTL=5.56). With vocoded speech, NH listeners still made use of both cues but less efficiently (normalized perceptual weight: F0=1.68, VTL=0.63). CI users relied almost exclusively on F0 while VTL perception was profoundly impaired (normalized perceptual weight: F0=6.88, VTL=0.59). As a result, CI users' gender categorization was abnormal compared to NH listeners. Future CI signal processing should aim to improve the transmission of both F0 cues and VTL cues, as a normal gender categorization may benefit speech understanding in competing talker situations.
Subtotal petrosectomy combined with cochlear implantation is a procedure required in specific situations and lowers the risk of repetitive ear infections, CSF leakage, and meningitis by closing off all connection with the external environment. Additionally, it gives excellent visibility and access in difficult anatomy or in drill-out procedures. The complication rate of 6% is comparable with normal cochlear implantation. Preservation of residual hearing can be considered the only absolute contraindication as an open external meatus is necessary for use of electroacoustic stimulation. Risks of the SP+CI procedure are infection of the abdominal fat, breakdown of the blind sac closure, and entrapped cholesteatoma. Follow-up with CT imaging is therefore mandatory.
Cochlear implants (CIs) are auditory prostheses that restore hearing via electrical stimulation of the auditory nerve. Compared to normal acoustic hearing, sounds transmitted through the CI are spectro-temporally degraded, causing difficulties in challenging listening tasks such as speech intelligibility in noise and perception of music. In normal hearing (NH), musicians have been shown to better perform than non-musicians in auditory processing and perception, especially for challenging listening tasks. This “musician effect” was attributed to better processing of pitch cues, as well as better overall auditory cognitive functioning in musicians. Does the musician effect persist when pitch cues are degraded, as it would be in signals transmitted through a CI? To answer this question, NH musicians and non-musicians were tested while listening to unprocessed signals or to signals processed by an acoustic CI simulation. The task increasingly depended on pitch perception: (1) speech intelligibility (words and sentences) in quiet or in noise, (2) vocal emotion identification, and (3) melodic contour identification (MCI). For speech perception, there was no musician effect with the unprocessed stimuli, and a small musician effect only for word identification in one noise condition, in the CI simulation. For emotion identification, there was a small musician effect for both. For MCI, there was a large musician effect for both. Overall, the effect was stronger as the importance of pitch in the listening task increased. This suggests that the musician effect may be more rooted in pitch perception, rather than in a global advantage in cognitive processing (in which musicians would have performed better in all tasks). The results further suggest that musical training before (and possibly after) implantation might offer some advantage in pitch processing that could partially benefit speech perception, and more strongly emotion and music perception.
In normal-hearing (NH) adults, long-term music training may benefit music and speech perception, even when listening to spectro-temporally degraded signals as experienced by cochlear implant (CI) users. In this study, we compared two different music training approaches in CI users and their effects on speech and music perception, as it remains unclear which approach to music training might be best. The approaches differed in terms of music exercises and social interaction. For the pitch/timbre group, melodic contour identification (MCI) training was performed using computer software. For the music therapy group, training involved face-to-face group exercises (rhythm perception, musical speech perception, music perception, singing, vocal emotion identification, and music improvisation). For the control group, training involved group nonmusic activities (e.g., writing, cooking, and woodworking). Training consisted of weekly 2-hr sessions over a 6-week period. Speech intelligibility in quiet and noise, vocal emotion identification, MCI, and quality of life (QoL) were measured before and after training. The different training approaches appeared to offer different benefits for music and speech perception. Training effects were observed within-domain (better MCI performance for the pitch/timbre group), with little cross-domain transfer of music training (emotion identification significantly improved for the music therapy group). While training had no significant effect on QoL, the music therapy group reported better perceptual skills across training sessions. These results suggest that more extensive and intensive training approaches that combine pitch training with the social aspects of music therapy may further benefit CI users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.