Although understanding the conformations and arrangements of conjugated materials as solids is key to their prospective applications, predictive power over these structural factors remains elusive. In this work, substituent effects tune non-covalent interactions between side-chain fluorinated benzyl esters and main-chain terminal arenes, in turn controlling the conformations and interchromophore aggregation of three-ring phenylene-ethynylenes (PEs). Cofacial fluoroarene-arene (ArF-ArH) interactions cause twisting in the PE backbone, interrupting intramolecular conjugation as well as blocking chromophore aggregation, both of which prevent the typically observed bathochromic shift observed upon transitioning PEs from solution to solid. This work highlights two structural factors that determine whether the ArF-ArH interactions, and the resulting twisted, unaggregated chromophores, occur in these solids: (i) the electron-releasing characteristic of substituents on ArH, with more electron-releasing character favoring ArF-ArH interactions, and (ii) the fluorination pattern of the ArF ring, with 2,3,4,5,6-pentafluorophenyl favoring ArF-ArH interactions over 2,4,6-trifluorophenyl. These trends indicate that considerations of electrostatic complementarity, whether through a polar-π or substituent-substituent mechanism, can serve as an effective design principle in controlling the interaction strengths, and therefore the optoelectronic properties, of these molecules as solids.
This paper describes the influence of steric and electronic factors in the regioselectivity of endoperoxide formation of tetracene derivatives using (1)O2. A combination of kinetics experiments and product distributions resulting from these photosensitized oxidations demonstrates that, while the steric effect of o-alkyl groups on aryl substituents is highly localized to the substituted ring, the resistance to oxidation based on phenylethynyl substituents is more evenly distributed between the two reactive rings. These results are important for the rational design of highly persistent acenes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.