Background Many lower-limb exoskeletons have been developed to assist gait, exhibiting a large range of control methods. The goal of this paper is to review and classify these control strategies, that determine how these devices interact with the user. Methods In addition to covering the recent publications on the control of lower-limb exoskeletons for gait assistance, an effort has been made to review the controllers independently of the hardware and implementation aspects. The common 3-level structure (high, middle, and low levels) is first used to separate the continuous behavior (mid-level) from the implementation of position/torque control (low-level) and the detection of the terrain or user’s intention (high-level). Within these levels, different approaches (functional units) have been identified and combined to describe each considered controller. Results 291 references have been considered and sorted by the proposed classification. The methods identified in the high-level are manual user input, brain interfaces, or automatic mode detection based on the terrain or user’s movements. In the mid-level, the synchronization is most often based on manual triggers by the user, discrete events (followed by state machines or time-based progression), or continuous estimations using state variables. The desired action is determined based on position/torque profiles, model-based calculations, or other custom functions of the sensory signals. In the low-level, position or torque controllers are used to carry out the desired actions. In addition to a more detailed description of these methods, the variants of implementation within each one are also compared and discussed in the paper. Conclusions By listing and comparing the features of the reviewed controllers, this work can help in understanding the numerous techniques found in the literature. The main identified trends are the use of pre-defined trajectories for full-mobilization and event-triggered (or adaptive-frequency-oscillator-synchronized) torque profiles for partial assistance. More recently, advanced methods to adapt the position/torque profiles online and automatically detect terrains or locomotion modes have become more common, but these are largely still limited to laboratory settings. An analysis of the possible underlying reasons of the identified trends is also carried out and opportunities for further studies are discussed.
This paper introduces TWIICE, a lower-limb exoskeleton that enables people suffering from complete paraplegia to stand up and walk again. TWIICE provides complete mobilization of the lower-limbs, which is a first step toward enabling the user to regain independence in activities of the daily living. The tasks it can perform include level and inclined walking (up to 20° slope), stairs ascent and descent, sitting on a seat, and standing up. Participation in the world's first Cybathlon (Zurich, 2016) demonstrated good performance at these demanding tasks. In this paper, we describe the implementation details of the device and comment on preliminary results from a single user case study.
Lower limb exoskeletons have already proven the capability to give back mobility to people suffering from spinal cord injury (SCI). Other important populations such as people with multiple sclerosis or muscular dystrophy, frail elderly and stroke victims, suffer from severe gait impairments and could benefit from similar technology. The work presented in the current paper describes a novel design of a 6-actuated degrees of freedom (DOFs) assistive lower limb exoskeleton for people with moderate mobility impairments. The electrical actuators are all remotely located on the back of the user for a more compact design with high dynamics. Cable driven solutions are used to transmit the flexion/extension of the hip and knee joints, while a powerful ballscrew carries out the hip adduction/abduction. The design of this exoskeleton, named AUTONOMYO, follows the key specifications of being highly back-drivable and able to perform dynamic motions at low energy consumption. AUTONOMYO is capable to assist the user's balance by providing complementary torques at the hip and the knee. Results show that the projected level of assistance for sit-to-stand transition varies from 50% to 100% in function of the user's bodyweight and height while higher level of assistance are reached for walking and stairs climbing activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.