Lactate generated from pyruvate fuels production of intracellular NAD þ as an end result of the glycolytic process in tumors. Elevated lactate concentration represents a good indicator of the metabolic adaptation of tumors and is actually correlated to clinical outcome in a variety of human cancers. In this study, we investigated whether lactate could directly modulate the endothelial phenotype and thereby tumor vascular morphogenesis and perfusion. We found that lactate could enter endothelial cells through the monocarboxylate transporter MCT-1, trigger the phosphorylation/degradation of IkBa, and then stimulate an autocrine NF-kB/IL-8 (CXCL8) pathway driving cell migration and tube formation. These effects were prevented by 2-oxoglutarate and reactive oxygen species (ROS) inhibitors, pointing to a role for prolyl-hydroxylase and ROS in the integration of lactate signaling in endothelial cells. PHD2 silencing in endothelial cells recapitulated the proangiogenic effects of lactate, whereas a blocking IL-8 antibody or IL-8-targeting siRNA prevented them. Finally, we documented in mouse xenograft models of human colorectal and breast cancer that lactate release from tumor cells through the MCT4 (and not MCT1) transporter is sufficient to stimulate IL-8-dependent angiogenesis and tumor growth. In conclusion, our findings establish a signaling role for lactate in endothelial cells and they identify the lactate/NFkB/IL-8 pathway as an important link between tumor metabolism and angiogenesis. Cancer Res; 71(7); 2550-60. Ó2011 AACR.
The receptor NLRP3 is involved in the formation of the NLRP3 inflammasome that activates caspase-1 and mediates the release of interleukin 1β (IL-1β) and IL-18. Whether NLRP3 can shape immunological function independently of inflammasomes is unclear. We found that NLRP3 expression in CD4(+) T cells specifically supported a T helper type 2 (TH2) transcriptional program in a cell-intrinsic manner. NLRP3, but not the inflammasome adaptor ASC or caspase-1, positively regulated a TH2 program. In TH2 cells, NLRP3 bound the Il4 promoter and transactivated it in conjunction with the transcription factor IRF4. Nlrp3-deficient TH2 cells supported melanoma tumor growth in an IL-4-dependent manner and also promoted asthma-like symptoms. Our results demonstrate the ability of NLRP3 to act as a key transcription factor in TH2 differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.