Large graphs are natural mathematical models for describing the structure of the data in a wide variety of fields, such as web mining, social networks, information retrieval, biological networks, etc. For all these applications, automatic tools are required to get a synthetic view of the graph and to reach a good understanding of the underlying problem. In particular, discovering groups of tightly connected vertices and understanding the relations between those groups is very important in practice. This paper shows how a kernel version of the batch Self Organizing Map can be used to achieve these goals via kernels derived from the Laplacian matrix of the graph, especially when it is used in conjunction with more classical methods based on the spectral analysis of the graph. The proposed method is used to explore the structure of a medieval social network modeled through a weighted graph that has been directly built from a large corpus of agrarian contracts.
We propose an analysis of the codified Law of France as a structured system. Fifty two legal codes are selected on the basis of explicit legal criteria and considered as vertices with their mutual quotations forming the edges in a network which properties are analyzed relying on graph theory. We find that a group of 10 codes are simultaneously the most citing and the most cited by other codes, and are also strongly connected together so forming a "rich club" sub-graph. Three other code communities are also found that somewhat partition the legal field is distinct thematic sub-domains. The legal interpretation of this partition is opening new untraditional lines of research. We also conjecture that many legal systems are forming such new kind of networks that share some properties in common with small worlds but are far denser. We propose to call "concentrated world".
An even (resp. odd) lollipop is the coalescence of a cycle of even (resp. odd) length and a path with pendant vertex as distinguished vertex. It is known that the odd lollipop is determined by its spectrum and the question is asked by W. Haemers, X. Liu and Y. Zhang for the even lollipop. A private communication of Behruz Tayfeh-Rezaie pointed out that an even lollipop with a cycle of length at least $6$ is determined by its spectrum but the result for lollipops with a cycle of length $4$ is still unknown. We give an unified proof for lollipops with a cycle of length not equal to $4$, generalize it for lollipops with a cycle of length $4$ and therefore answer the question. Our proof is essentially based on a method of counting closed walks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.