In this paper, we study the sum rate performance of zero-forcing (ZF) and regularized ZF (RZF) precoding in large MISO broadcast systems under the assumptions of imperfect channel state information at the transmitter and per-user channel transmit correlation. Our analysis assumes that the number of transmit antennas M and the number of single-antenna users K are large while their ratio remains bounded. We derive deterministic approximations of the empirical signal-tointerference plus noise ratio (SINR) at the receivers, which are tight as M, K → ∞. In the course of this derivation, the per-user channel correlation model requires the development of a novel deterministic equivalent of the empirical Stieltjes transform of large dimensional random matrices with generalized variance profile. The deterministic SINR approximations enable us to solve various practical optimization problems. Under sum rate maximization, we derive (i) for RZF the optimal regularization parameter, (ii) for ZF the optimal number of users, (iii) for ZF and RZF the optimal power allocation scheme and (iv) the optimal amount of feedback in large FDD/TDD multi-user systems. Numerical simulations suggest that the deterministic approximations are accurate even for small M, K.
Blending theoretical results with practical applications, this book provides an introduction to random matrix theory and shows how it can be used to tackle a variety of problems in wireless communications. The Stieltjes transform method, free probability theory, combinatoric approaches, deterministic equivalents, and spectral analysis methods for statistical inference are all covered from a unique engineering perspective. Detailed mathematical derivations are presented throughout, with thorough explanations of the key results and all fundamental lemmas required for the readers to derive similar calculus on their own. These core theoretical concepts are then applied to a wide range of real-world problems in signal processing and wireless communications, including performance analysis of CDMA, MIMO, and multi-cell networks, as well as signal detection and estimation in cognitive radio networks. The rigorous yet intuitive style helps demonstrate to students and researchers alike how to choose the correct approach for obtaining mathematically accurate results.
In this article, novel deterministic equivalents for the Stieltjes transform and the Shannon transform of a class of large dimensional random matrices are provided. These results are used to characterise the ergodic rate region of multiple antenna multiple access channels, when each point-to-point propagation channel is modelled according to the Kronecker model. Specifically, an approximation of all rates achieved within the ergodic rate region is derived and an approximation of the linear precoders that achieve the boundary of the rate region as well as an iterative water-filling algorithm to obtain these precoders are provided. An original feature of this work is that the proposed deterministic equivalents are proved valid even for strong correlation patterns at both communication sides. The above results are validated by Monte Carlo simulations. Index TermsDeterministic equivalent, random matrix theory, ergodic capacity, MIMO, MAC, optimal precoder.
This article studies two regularized robust estimators of scatter matrices proposed (and proved to be well defined) in parallel in (Chen et al., 2011) and(Pascal et al., 2013), based on Tyler's robust M-estimator (Tyler, 1987) and on Ledoit and Wolf's shrinkage covariance matrix estimator (Ledoit and Wolf, 2004). These hybrid estimators have the advantage of conveying (i) robustness to outliers or impulsive samples and (ii) small sample size adequacy to the classical sample covariance matrix estimator. We consider here the case of i.i.d. elliptical zero mean samples in the regime where both sample and population sizes are large. We demonstrate that, under this setting, the estimators under study asymptotically behave similar to well-understood random matrix models. This characterization allows us to derive optimal shrinkage strategies to estimate the population scatter matrix, improving significantly upon the empirical shrinkage method proposed in (Chen et al., 2011).
This article studies the Gram random matrix model G = 1 T Σ T Σ, Σ = σ(W X), classically found in the analysis of random feature maps and random neural networks, where X = [x1, . . . , xT ] ∈ R p×T is a (data) matrix of bounded norm, W ∈ R n×p is a matrix of independent zero-mean unit variance entries, and σ : R → R is a Lipschitz continuous (activation) function -σ(W X) being understood entrywise. By means of a key concentration of measure lemma arising from non-asymptotic random matrix arguments, we prove that, as n, p, T grow large at the same rate, the resolvent Q = (G + γIT ) −1 , for γ > 0, has a similar behavior as that met in sample covariance matrix models, involving notably the moment Φ = T n E[G], which provides in passing a deterministic equivalent for the empirical spectral measure of G. Application-wise, this result enables the estimation of the asymptotic performance of single-layer random neural networks. This in turn provides practical insights into the underlying mechanisms into play in random neural networks, entailing several unexpected consequences, as well as a fast practical means to tune the network hyperparameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.