The deployment of Li‐garnet Li7La3Zr2O12 (LLZO) solid‐state electrolytes in solid‐state batteries is severely hampered by their poor wettability with metallic Li. In this work, Sb is presented as a compelling interfacial layer allowing superior wetting of Li onto a LLZO surface, resulting in a remarkably low Li/LLZO interfacial resistance of 4.1(1) Ω cm2. An atomistic insight into Sb‐coated LLZO interface using soft and hard X‐ray photoelectron spectroscopy and focused ion beam time‐of‐flight secondary ion mass spectrometry shows the formation of a Li‐Sb alloy as an interlayer. It is determined that the Li/Sb‐coated LLZO/Li symmetrical cells exhibit a high critical current density of up to 0.64 mA cm−2 and low overpotentials of 40–50 mV at a current density of 0.2 mA cm−2 without applying external pressure. The electrochemical performance of Sb coated‐LLZO pellets is also assessed with an intercalation‐type V2O5 cathode. Li/Sb‐coated‐LLZO/V2O5 full cells deliver stable capacities of around 0.45 mAh cm−2, with a peak current density of 0.3 mA cm−2.
Metal-organic frameworks (MOFs) hold great promise as structurally tunable catalysts capable of high selectivity in the solid state, yet their comparatively high cost and often limited stability remain significant concerns for their commercialization as heterogeneous catalysts. Here, we report detailed X-ray absorption spectroscopy studies of Co-and Ni-MFU-4l, a class of highly selective MOF catalysts for olefin upgrading, and reveal mechanisms that lead to their deactivation. We further show that Ni-CFA-1, a more scalable and economical alternative to Ni-MFU-4l, reproduces both the local coordination structure and the high selectivity of the latter in ethylene dimerization catalysis. Under optimal conditions, Ni-CFA-1 activated by MMAO-12 achieves a turnover frequency of 37,100 per hour and a selectivity of 87.1% for 1-butene, a combination of activity, selectivity, and affordability that is unmatched among heterogeneous ethylene dimerization catalysts. Ni-CFA-1 retains its high activity for at least 12 hours in a oneliter semi-batch reactor, offering a strategy toward robust and scalable MOFs for industrial catalysis.
Molecular catalysts offer tremendous advantages for stereoselective polymerization because their activity and selectivity can be optimized and understood mechanistically using the familiar tools of organometallic chemistry. Yet, this exquisite control over selectivity comes at an operational price that is generally not justifiable for the large-scale manufacture of polyfolefins. In this report, we identify Co-MFU-4l, prepared by cation exchange in a metal-organic framework, as a solid catalyst for the polymerization of 1,3-butadiene with high stereoselectivity (>99% 1,4-cis). To our knowledge, this is the highest stereoselectivity achieved with a heterogeneous catalyst for this transformation. The polymer's low polydispersity (PDI ≈ 2) and the catalyst's ready recovery and low leaching indicate that our material is a structurally resilient single-site heterogeneous catalyst. Further characterization of Co-MFU-4l by X-ray absorption spectroscopy provided evidence for discrete, tris-pyrazolylborate-like coordination of Co(II). With this information, we identify a soluble cobalt complex that mimics the structure and reactivity of Co-MFU-4l, thus providing a well-defined platform for studying the catalytic mechanism in the solution phase. This work underscores the capacity for small molecule-like tunability and mechanistic tractability available to transition metal catalysis in metal-organic frameworks.
Rechargeable magnesium batteries are appealing as safe, low-cost systems with high-energy-density storage that employ predominantly dendrite-free magnesium metal as the anode. While significant progress has been achieved with magnesium electrolytes in recent years, the further development of Mg-ion batteries, however, is inherently limited by the lack of suitable cathode materials, mainly due to the slow diffusion of high-charge-density Mg-ions in the intercalation-type host structures and kinetic limitations of conversion-type cathodes that often causes poor cyclic stability. Nanostructuring the cathode materials offers an effective means of mitigating these challenges, due to the reduced diffusion length and higher surface areas. In this context, we present the highly reversible insertion of Mg-ions into nanostructured conversion-type CuS cathode, delivering high capacities of 300 mAh g −1 at room temperature and high cyclic stability over 200 cycles at a current density of 0.1 A g −1 with a high coulombic efficiency of 99.9%. These materials clearly outperform bulk CuS, which is electrochemically active only at an elevated temperature of 50 °C. Our results not only point to the important role of nanomaterials in the enhancement of the kinetics of conversion reactions but also suggest that nanostructuring should be used as an integral tool in the exploration of new cathodes for multivalent, i.e., (Mg, Ca, Al)-ion batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.