The EMI-compatibility of the LabPET II detection module (DM) to develop a high-resolution simultaneous PET/MRI system is investigated. The experimental set-up evaluates the performance of two LabPET II DMs in close proximity to RF coils excited at three different frequencies mimicking the electromagnetic environments of 3 T, 7 T, and 9.4 T MRI scanners. A gradient coil, with switching frequency from 10 kHz to 100 kHz, also surrounds one of the DMs to investigate the effects of the gradient field on the individual detector performance, such as the baseline of the DC-voltage and noise level along with both the energy and coincidence time resolutions. Measurements demonstrate a position shift of the energy photopeaks (⩽9%) and a slight deterioration of the energy and coincidence time resolutions in the presence of electromagnetic interferences from the gradient and RF coils. The electromagnetic interferences cause an average degradation of up to ~50% of the energy resolution (in time-over-threshold spectra) and up to 18% of the timing resolution. Based on these results, a modified version of the DM, including a composite shielding as well as an improved heat pipe-based cooling mechanism, capable of stabilizing the temperature of the DM at ~40 °C, is proposed and investigated. This shielded version shows no evidence of performance degradation inside an MRI-like environment. The experimental results demonstrate that a properly shielded version of the LabPET II DM is a viable candidate for an MR-compatible PET scanner.
BackgroundRobust quantitative analysis in positron emission tomography (PET) and in single-photon emission computed tomography (SPECT) typically requires the time-activity curve as an input function for the pharmacokinetic modeling of tracer uptake. For this purpose, a new automated tool for the determination of blood activity as a function of time is presented.The device, compact enough to be used on the patient bed, relies on a peristaltic pump for continuous blood withdrawal at user-defined rates. Gamma detection is based on a 20 × 20 × 15 mm3 cadmium zinc telluride (CZT) detector, read by custom-made electronics and a field-programmable gate array-based signal processing unit. A graphical user interface (GUI) allows users to select parameters and easily perform acquisitions.ResultsThis paper presents the overall design of the device as well as the results related to the detector performance in terms of stability, sensitivity and energy resolution. Results from a patient study are also reported. The device achieved a sensitivity of 7.1 cps/(kBq/mL) and a minimum detectable activity of 2.5 kBq/ml for 18F. The gamma counter also demonstrated an excellent stability with a deviation in count rates inferior to 0.05% over 6 h. An energy resolution of 8% was achieved at 662 keV.ConclusionsThe patient study was conclusive and demonstrated that the compact gamma blood counter developed has the sensitivity and the stability required to conduct quantitative molecular imaging studies in PET and SPECT.
Inserting positron emission tomography (PET) detection modules inside an MRI bore imposes extra challenges owing to the behavior of metallic materials in a strong magnetic field. The metallic parts even when placed outside an MRI field of view may not only disturb MRI performance, but could also increase temperature and vibrations, leading to premature failure of PET electronics. To investigate the compatibility of detection modules inside 3 T, 7 T and 9.4 T MRI bore, a theoretical study of the metal induced artifacts originating from component materials of electronic circuit is presented. The LabPET II detection module and a modified version of it in which the connector was replaced by ball grid array (BGA) were studied. In addition, the effect of eddy current and the associated heat loss on the PET detection module have been examined using COMSOL Multiphysics® simulations for 10 kHz and 100 kHz gradient switching. Results show that displacement artifacts resulting from the presence of small amounts of ferromagnetic metal and the heating effects of metal due to gradient switching can be compensated by using the slightly modified LabPET II detection module. Thus, the LabPET II system would be MR-compatible with some minor adjustments to operate effectively inside an MRI bore without interfering with its performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.