A great part of research activities, which are related to network and system integration towards a holistic 5G system, is still ahead of us. The reason is that despite the unprecedented advancements in the wireless link capacity, the actual 5G ecosystem contains numerous diverse software and hardware technologies including a multitude of components for different radio access networks. Moreover, the combination of various services requires complex functionality of the system. All these factors have immediate impact on the final performance and actual future modifications of 5G production systems. From the Telecom provider perspective, extreme pressure is put on the existing infrastructure. Traffic demand has dramatically increased, therefore preserving appropriate communications quality, responding to massive traffic volumes, and supporting a number of diverse use cases is a great challenge for future communication networks.
International audienceFourth generation LTE has been selected by U.S. federal and EU authorities to be the technology for public safety networks that would allow first responders to seamlessly communicate between agencies and across geographical locations in tactical and emergency scenarios. From Release 11 on, 3GPP has been developing and specifying dedicated nationwide public safety broadband networks that will be scalable, robust, and resilient, and can address the specific communication needs of emergency services. In this realm, the requirements and scenarios for isolated E-UTRAN with no or limited backhaul access to the core network are still in progress. In this article, we survey possible public safety use cases with the induced network topologies, discuss the current status of the 3GPP standards, and highlight future challenges. We further elaborate on the need to support mobile backhauling in moving-cell scenarios and describe two LTE based solutions to enable dynamic meshing among the base stations
In this paper, we provide a revolutionary vision of 5G networks, in which SDN technologies are used for the programmability of the wireless network, and where a NFV-ready network store is provided to Mobile Network Operators (MNO), Enterprises, and Over-The-Top (OTT) third parties. The proposed network serves as a digital distribution platform of programmable Virtualized Network Functions (VNFs) that enables 5G application use-cases. Currently existing application stores, such as Apple's App Store for iOS applications, Google's Play Store for Android, or Ubuntu's Software Center, deliver applications to user specific software platforms. Our vision is to provide a digital marketplace, gathering 5G enabling Network Applications and Network Functions, written to run on top of commodity cloud infrastructures, connected to remote radio heads (RRH). The 5G Network Store will be the same to the network provider as the application store is currently to a software platform.
Commoditization and virtualization of wireless networks are changing the economics of mobile networks to help network providers, e.g. Mobile Network Operator (MNO), Mobile Virtual Network Operator (MVNO), move from proprietary and bespoke hardware and software platforms towards an open, cost-effective, and flexible cellular ecosystem. In addition, rich and innovative local services can be efficiently materialized through cloudification by leveraging the existing infrastructure. In this work, we present a Radio Access Network as a Service (RANaaS), in which a Cloudified Centralized Radio Access Network (C-RAN) is delivered as a service. RANaaS describes the service life-cycle of an on-demand, elastic, and pay as you go RAN instantiated on top of the cloud infrastructure. Due to short deadlines in many examples of RAN, the fluctuations of processing time, introduced by the virtualization framework, have a deep impact on the C-RAN performance. While in typical cloud environments, the deadlines of processing time cannot be guaranteed, the cloudification of C-RAN, in which signal processing runs on general purpose processors inside Virtual Machines (VMs), is a challenging subject. We describe an example of real-time cloudified LTE network deployment using the OpenAirInterface (OAI) LTE implementation and OpenStack running on commodity hardware. We also show the flexibility and performance of the platform developed. Finally, we draw general conclusions on the RANaaS provisioning problem in future 5G networks.Abstract Commoditization and virtualization of wireless networks are changing the economics of mobile networks to help network providers, e.g. Mobile Network Operator (MNO), Mobile Virtual Network Operator (MVNO), move from proprietary and bespoke hardware and software platforms towards an open, cost-effective, and flexible cellular ecosystem. In addition, rich and innovative local services can be efficiently materialized through cloudification by leveraging the existing infrastructure. In this work, we present a Radio Access Network as a Service (RANaaS), in which a Cloudified Centralized Radio Access Network (C-RAN) is delivered as a service. RANaaS describes the service life-cycle of an on-demand, elastic, and pay as you go RAN instantiated on top of the cloud infrastructure. Due to short deadlines in many examples of RAN, the fluctuations of processing time, introduced by the virtualization framework, have a deep impact on the C-RAN performance. While in typical cloud environments, the deadlines of processing time cannot be guaranteed, the cloudification of C-RAN, in which signal processing runs on general purpose processors inside Virtual Machines (VMs), is a challenging subject. We describe an example of real-time cloudifed LTE network deployment using the OpenAirInterface (OAI) LTE implementation and OpenStack running on commodity hardware. We also show the flexibility and performance of the platform developed. Finally, we draw general conclusions on the RANaaS provisioning problem in future 5G networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.