Background: Short-term effects of silvicultural treatments on soil properties and understory vegetation in temperate hardwood forests are well documented, but few studies have examined longer term effects of treatment intensity. We hypothesized that short-term effects of silvicultural treatments on understory plant diversity do persist over the medium-term (20 years after treatment); the magnitude of these effects would be proportional to the intensity of canopy and soil disturbance.Methods: Soil properties (pH, total C and N, extractable P, exchangeable bases) and understory community diversity indices were measured in six experimental sites along a longitudinal gradient that covered different climatic and edaphic conditions in the yellow birch-sugar maple bioclimate domain. Reference condition, i.e. control forest with no anthropogenic disturbance for at least 80 years (CON) were compared to twenty years old regeneration treaments representing a gradient of canopy and soil disturbance intensity: single-tree selection cuts (SIN); group-selection cuts (GRP); and group-selection cuts with scarification (GRPS). Results: Geographic location of sites explained more variation in soil properties and community composition than did treatments. Species richness in both group-selection treatments was higher than that in CON forests. However, understory plant equitability and beta diversity among sites in GRP and GRPS were lower than in SIN and CON forests. More intense treatments (GRP and GRPS) increased the relative occurrence of vegetatively reproducing heliophilic plants, a trait syndrome associated with adaptations to disturbed environments. These treatments also contributed to the medium-term persistence of recalcitrant competitor species (e.g., Rubus idaeus, Prunus pensylvanica) whereas soil scarification appears to have negative sustained effects on species known to be sensitive to regeneration treatments (e.g. Monotropa uniflora, Dryopteris spinulosa).Conclusion: Of the treatments studied, single-tree selection cutting appears to be the most appropriate silvicultural treatment for maintaining soil functions and heterogeneous understory plant communities with compositions and structures similar to natural forests, while more intense treatments rather maintain and expand species that are better adapted to a wider range of environmental conditions, including open environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.