Abstract. This study presents the principles of the new coupling interface based on the SURFEX multi-surface model and the OASIS3-MCT coupler. As SURFEX can be plugged into several atmospheric models, it can be used in a wide range of applications, from global and regional coupled climate systems to high-resolution numerical weather prediction systems or very fine-scale models dedicated to process studies. The objective of this development is to build and share a common structure for the atmosphere-surface coupling of all these applications, involving on the one hand atmospheric models and on the other hand ocean, ice, hydrology, and wave models. The numerical and physical principles of SURFEX interface between the different component models are described, and the different coupled systems in which the SURFEX OASIS3-MCT-based coupling interface is already implemented are presented.
The Mediterranean Sea is an important source of heat and moisture for heavy precipitation events (HPEs). Moreover, the ocean mixed layer (OML) evolves rapidly under such intense events. Whereas short‐term numerical weather prediction systems generally use low‐resolution non‐evolving sea surface temperature (SST), the development of high‐resolution high‐frequency coupled system allows us to fully take into account the fine‐scale interactions between the low‐level atmosphere and the OML which occur during HPEs. The aim of this study is to investigate the impact of fine‐scale air–sea interactions and coupled processes involved during the HPEs which occurred during 12–15 October 2012 (IOP13) and 26–28 October 2012 (IOP16a/b) of the HyMeX first field campaign. For that purpose, the high‐resolution coupled system AROME‐NEMO WMED was developed. This system is based on the 2.5 km‐resolution non‐hydrostatic convection‐permitting atmospheric model AROME‐WMED and the 1/36°‐resolution NEMO‐WMED36 ocean model. The coupling frequency is 1 h. To distinguish the effects due to the change in the initial SST field from that due to the interactive 3D ocean, the coupled run is compared to two AROME‐WMED atmosphere‐only experiments with no SST evolution during the 48 h forecast cycles—one using the AROME‐WMED SST analysis, the second using the SST field of the coupled experiment each day at 0000 UTC. The results of the three experiments re‐assert that the SST initial condition strongly influences the HPE forecast, in terms of intensity and location. With water budget analyses, the significant impact of the ocean interactive evolution on the surface evaporation water supply for HPEs is also highlighted. In cases of strong and intense air–sea exchanges, as in the mistral event of IOP16b, the coupling reproduces the intense and rapid surface cooling and demonstrates the importance of representing the ocean turbulent mixing with entrainment at the OML base.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.