Rivers transport land-based plastic waste into the ocean. Current efforts to quantify riverine plastic emission come with uncertainty as field observations are scarce. One of the challenging aspects is the lack of consistent measurement methods that allow for comparing rivers over space and time. Recent studies have shown that simple visual observations provide a robust first-order characterization of floating and superficially suspended plastic transport, both in quantity, spatiotemporal distribution and composition. For this study, we applied this method to the river Seine, France, to provide new insights in the spatiotemporal variation in riverine plastic transport. First, we studied the response of plastic flow to increased river discharge by comparing measurements taken during low flow and high flow periods. Second, we investigated the variation of riverine plastic transport over the river length to improve our understanding of the origin and fate of riverine plastics. We demonstrate that during a period with higher river discharge, plastic transport increased up to a factor ten at the observation point closest to the river mouth. This suggests that the plastic emission into the ocean from the Seine may also be considerably higher during increased discharge. Upstream of Paris plastic transport increased only with a factor 1.5, suggesting that most plastics originate from Paris or areas further downstream. With this paper we aim to shed additional light on the seasonal variation in riverine plastic transport and its distribution along the river length, which may benefit future long-term monitoring efforts and plastic pollution mitigation strategies.
Rivers are a major pathway for plastics between lands and the ocean. At the land-ocean interface, estuaries make the transfer dynamic of plastics complex and nonlinear. That is why very little is known about this dynamic. In this respect, a specific marker (i.e. Microlax packaging) showing date-prints was systematically investigated in different riverbanks of the Seine estuary to identify the share of "old" and "recent" litter transiting through the estuary toward the ocean. Up to 70% of Microlax were "old" plastic items probably related to the meandering dynamic of the river over large time and space scales, and hydrodynamic conditions (tides) at smaller scales. This contributes together to increase the residence time of plastics into the estuary up to decades with almost endless transport, deposit and remobilization cycles. Consequently, the Seine estuary may function as a "microplastic factory" resulting from the fragmentation of macroplastics into microplastics well before they reach the ocean.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.