The literature suggests that the physiological functions for which mitochondria sequester Ca(2+) are (1). to stimulate and control the rate of oxidative phosphorylation, (2). to induce the mitochondrial permeability transition (MPT) and perhaps apoptotic cell death, and (3). to modify the shape of cytosolic Ca(2+) pulses or transients. There is strong evidence that intramitochondrial Ca(2+) controls both the rate of ATP production by oxidative phosphorylation and induction of the MPT. Since the results of these processes are so divergent, the signals inducing them must not be ambiguous. Furthermore, as pointed out by Balaban [J. Mol. Cell. Cardiol. 34 (2002 ) 11259-11271], for any repetitive physiological process dependent on intramitochondrial free Ca(2+) concentration ([Ca(2+)](m)), a kind of intramitochondrial homeostasis must exist so that Ca(2+) influx during the pulse is matched by Ca(2+) efflux during the period between pulses to avoid either Ca(2+) buildup or depletion. In addition, mitochondrial Ca(2+) transport modifies both spatial and temporal aspects of cytosolic Ca(2+) signaling. Here, we look at the amounts of Ca(2+) necessary to mediate the functions of mitochondrial Ca(2+) transport and at the mechanisms of transport themselves in order to set up a hypothesis about how the mechanisms carry out their roles. The emphasis here is on isolated mitochondria and on general mitochondrial properties in order to focus on how mitochondria alone may function to fulfill their physiological roles even though the interactions of mitochondria with other organelles, particularly with endoplasmic and sarcoplasmic reticulum [Sci. STKE re1 (2004) 1-9], may also influence this story.
There is emerging interest in stem cell energy metabolism and its effect on differentiation. Bioenergetic changes in differentiating bone marrow mesenchymal stem cells (MSCs) are poorly understood and were the focus of our study. Using bioenergetic profiling and transcriptomics, we have established that MSCs activate the mitochondrial process of oxidative phosphorylation (OxPhos) during osteogenic differentiation, but they maintain levels of glycolysis similar to undifferentiated cells. Consistent with their glycolytic phenotype, undifferentiated MSCs have high levels of hypoxia-inducible factor 1 (HIF-1). Osteogenically induced MSCs downregulate HIF-1 and this downregulation is required for activation of OxPhos. In summary, our work provides important insights on MSC bioenergetics and proposes a HIF-based mechanism of regulation of mitochondrial OxPhos in MSCs.
Bone marrow stromal (a.k.a. mesenchymal stem) cells (BMSCs) can differentiate into osteoblasts (OBs), adipocytes, or chondrocytes. As BMSCs undergo OB differentiation, they up-regulate mitochondrial oxidative phosphorylation (OxPhos). Here, we investigated the mechanism(s) connecting mitochondrial OxPhos to OB differentiation. First, we found that treating BMSC-like C3H10T1/2 cells with an OxPhos inhibitor reduces their osteogenic potential. Interestingly, ATP levels were not reduced, as glycolysis compensated for the decreased OxPhos. Thus, mitochondria support OB differentiation not only by supplying ATP, but also by other mechanisms. To uncover these mechanisms, we stimulated OxPhos in C3H10T1/2 cells by replacing media glucose with galactose and observed that this substitution increases both OxPhos and osteogenesis even in the absence of osteoinducers. β-Catenin, an important signaling pathway in osteogenesis, was found to be responsive to OxPhos stimulation. β-Catenin activity is maintained by acetylation, and mitochondria generate the acetyl donor acetyl-CoA, which upon entering the Krebs cycle is converted to citrate capable of exiting mitochondria. Cytosolic citrate is converted back to acetyl-CoA by ATP citrate lyase (ACLY). We found that inhibiting ACLY with SB204990 (SB) reverses the galactose-induced β-catenin activity and OB differentiation. This suggested that acetylation is involved in β-catenin activation after forced OxPhos stimulation, and using immunoprecipitation, we indeed detected SB-sensitive β-catenin acetylation. Both β-catenin acetylation and activity increased during osteoinduction coincident with OxPhos activation. These findings suggest that active mitochondria support OB differentiation by promoting β-catenin acetylation and thus activity.
Cyclophilin D (CypD) is a mitochondrial immunophilin and a key positive regulator of the mitochondrial permeability transition (MPT). Several reports have shown that CypD is overexpressed in various tumors, where it has an anti-apoptotic effect. Because the MPT is a cell death-inducing phenomenon, we hypothesized that the anti-apoptotic effect of CypD is independent of the MPT but is due to its interaction with some key apoptosis regulator, such as Bcl2. Our data indicate that CypD indeed interacts with Bcl2 as confirmed with co-immunoprecipitation, pulldown, and mammalian two-hybrid assays. A cyclophilin D inhibitor, cyclosporine A, disrupts the CypD-Bcl2 interaction. CypD enhances the limiting effect of Bcl2 on the tBid-induced release of cytochrome c from mitochondria, which is not mediated via the MPT. Gain-and loss-of-function experiments confirm that CypD has a limiting effect on cytochrome c release from mitochondria and that such an effect of CypD is cyclosporine A-and Bcl2-dependent. On a cellular level, overexpression or knockdown of CypD respectively decreases or increases cytochrome c release from mitochondria and overall cell sensitivity to apoptosis progressing via the "intrinsic" pathway. Therefore, we here describe a novel function of CypD as a Bcl2 collaborator and an inhibitor of cytochrome c release from mitochondria independent of the MPT. This function of CypD may explain the anti-apoptotic effect of this protein observed in various cancer cells. The fact that some tumors overexpress CypD suggests that this may be an additional mechanism of suppression of apoptosis in cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.