This article aims to analyze how data mining (DM) optimizes the enrollment process, with the intention of designing a predictive model to manage private enrollment for higher education institutions of Mexico. It analyzes the current status of the higher education institutions in relation to its enrollment process and the application of the DM. With a correlational method, a dataset (DS) was used to model an entropy decision tree with the help of Rapid Miner software. The results show that it is possible to build and test a predictive model management of private enrollment for higher education institutions of Mexico as the ZAM&EST model proposed by the authors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.