Theta and gamma oscillations in the hippocampus have been hypothesized to play a role in the encoding and retrieval of memories. Recently, it was shown that an intrinsic fast gamma mechanism in medial entorhinal cortex can be recruited by optogenetic stimulation at theta frequencies, which can persist with fast excitatory synaptic transmission blocked, suggesting a contribution of interneuronal network gamma (ING). We calibrated the passive and active properties of a 100-neuron model network to capture the range of passive properties and frequency/current relationships of experimentally recorded PV+ neurons in the medial entorhinal cortex (mEC). The strength and probabilities of chemical and electrical synapses were also calibrated using paired recordings, as were the kinetics and short-term depression (STD) of the chemical synapses. Gap junctions that contribute a noticeable fraction of the input resistance were required for synchrony with hyperpolarizing inhibition; these networks exhibited theta-nested high frequency oscillations similar to the putative ING observed experimentally in the optogenetically-driven PV-ChR2 mice. With STD included in the model, the network desynchronized at frequencies above ~200 Hz, so for sufficiently strong drive, fast oscillations were only observed before the peak of the theta. Because hyperpolarizing synapses provide a synchronizing drive that contributes to robustness in the presence of heterogeneity, synchronization decreases as the hyperpolarizing inhibition becomes weaker. In contrast, networks with shunting inhibition required non-physiological levels of gap junctions to synchronize using conduction delays within the measured range.
Neurons tend to fire a spike when they are near a bifurcation from the resting state to spiking activity. It is a delicate balance between noise, dynamic currents and initial condition that determines the phase diagram of neural activity. Many possible ionic mechanisms can be accounted for as the source of spike generation. Moreover, the biophysics and the dynamics behind it can usually be described through a phase diagram that involves membrane voltage versus the activation variable of the ionic channel. In this paper, we present a novel methodology to characterize the dynamics of this system, which takes into account the fine temporal 'structures' of the complex neuronal signals. This allows us to accurately distinguish the most fundamental properties of neurophysiological neurons that were previously described by Izhikevich considering the phase-space trajectory, using a time causal space: statistical complexity versus Fisher information versus Shannon entropy.
Electroencephalography (EEG) signals depict the electrical activity that takes place at the surface of the brain and provide an important tool for understanding a variety of cognitive processes. The EEG is the product of synchronized activity of the brain, and variations in EEG oscillations patterns reflect the underlying changes in neuronal synchrony. Our aim is to characterize the complexity of the EEG rhythmic oscillations bands when the subjects perform a visuomotor or imagined cognitive tasks (imagined movement), providing a causal mapping of the dynamical rhythmic activities of the brain as a measure of attentional investment. We estimate the intrinsic correlational structure of the signals within the causality entropy-complexity plane H×C, where the enhanced complexity in the gamma 1, gamma 2, and beta 1 bands allows us to distinguish motor-visual memory tasks from control conditions. We identify the dynamics of the gamma 1, gamma 2, and beta 1 rhythmic oscillations within the zone of a chaotic dissipative behavior, whereas in contrast the beta 2 band shows a much higher level of entropy and a significant low level of complexity that correspond to a non-invertible cubic map. Our findings enhance the importance of the gamma band during attention in perceptual feature binding during the visuomotor/imagery tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.