This paper reviews our recent work on vibrating sensors for the physical properties of fluids, particularly viscosity and density. Several device designs and the associated properties, specifically with respect to the sensed rheological domain and the onset of non-Newtonian behavior, are discussed.
Small-scale and distortion-free measurement of electric fields is crucial
for applications such as surveying atmospheric electrostatic fields, lightning
research, and safeguarding areas close to high-voltage power lines. A variety of
measurement systems exist, the most common of which are field mills, which work
by picking up the differential voltage of the measurement electrodes while
periodically shielding them with a grounded electrode. However, all current
approaches are either bulky, suffer from a strong temperature dependency, or
severely distort the electric field requiring a well-defined surrounding and
complex calibration procedures. Here we show that microelectromechanical system
(MEMS) devices can be used to measure electric field strength without
significant field distortion. The purely passive MEMS devices exploit the effect
of electrostatic induction, which is used to generate internal forces that are
converted into an optically tracked mechanical displacement of a
spring-suspended seismic mass. The devices exhibit resolutions on the order of
100(V/m)/Hz with a measurement range of up to tens of
kilovolt per metre in the quasi-static regime (≲ 300 Hz).We also show
that it should be possible to achieve resolutions of around
∼1(V/m)/Hz by fine-tuning of the sensor embodiment. These
MEMS devices are compact and could easily be mass produced for wide
application.
A sensor suitable for online monitoring of viscosity and density of glycerol-water mixtures is presented. The device is based on Lorentz force excitation and features an integrated piezoresistive readout. The core sensing element is a rectangular vibrating plate suspended by four beam springs. Two of the plate-carrying springs comprise piezoresistors. With two additional resistors on the silicon rim they form a half Wheatstone-bridge. Through the conductive layer of the beam springs a sinusoidal excitation current is driven. In the field of a permanent magnet, the Lorentz force excites plate vibrations resulting in a bridge unbalance. We recorded both the frequency response of the amplitude and the phase of the bridge output. By evaluating the properties of the resonant system, it is possible to extract the glycerol percentage and, hence, the viscosity and the mass density of the mixtures. This work is an extended version of the paper originally presented at SPIE
List of symbols
In this article we investigate the spurious excitation of compressional waves by thickness-shear-mode resonators, which are commonly used for chemical sensing and viscosity sensing. In particular, we consider the excitation mechanism due to the nonuniform shear displacement present at the sensitive surface of the resonator. To illustrate the basic mechanism we analytically develop a general solution for a two-dimensional model describing the displacement and the pressure distribution in the liquid obtained in terms of Fourier integrals. We discuss these solutions and derive a useful approximation for the far field representing said compressional modes. We finally illustrate the results considering a practical example and associated numerical results.
In recent decades, the demands for online monitoring of liquids in various applications have increased significantly. In this context, the sensing of the thermal transport parameters of liquids (i.e. thermal conductivity and diffusivity) may be an interesting alternative to well-established monitoring parameters like permittivity, mass density or shear viscosity. We developed a micromachined thermal property sensor, applicable to non-flowing liquids, featuring three in parallel microbridges, which carry either a heater or one of in total two thermistors. Its active sensing region was designed to achieve almost negligible spurious thermal shunts between heater and thermistors. This enables the adoption of a simple two-dimensional model to describe the heat transfer from the heater to the thermistors, which is mainly governed by the thermal properties of the sample liquid. Founded on this theoretical model, a novel measurement method for the thermal parameters was devised that relies solely on the frequency response of the measured peak temperature and allows simultaneous extraction of the thermal conductivity and diffusivity of liquids. In this contribution, we describe the device prototype, the model, the deduced measurement method and the experimental verification by means of test measurements carried out on five sample liquids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.