Oil palm plantations are expanding rapidly throughout Southeast Asia due to increasing global food demand, thereby putting greater pressure on local ecosystems. These plantations usually replace rainforests, resulting in major losses of soil structure and fertility, and belowground biodiversity. However, despite causing soil degradation, oil palms may provide a novel microhabitat for soil biota in suspended soil that accumulates in the axils of cut palm fronds attached to the trunks of these trees. We examined soil communities belowground and in frond axils in a 16-year-old oil palm plantation in Sumatra, Indonesia. Community metabolism of small arthropods, nematodes, and testate amoebae (protists) per gram of soil was much higher in axils (suspended soil) than in belowground soil, and accounted for approximately 28% of total soil fauna metabolism at the plantation scale (considering the top 5 cm of soil). Preserving these aboveground microhabitats of suspended soil as hotspots of biological activity during plantation management may therefore partly offset the detrimental impacts of oil palm plantations on soil-borne processes and biodiversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.