A survey of Galactic gamma-ray sources at a median energy of ~20 TeV has been
performed using the Milagro Gamma Ray Observatory. Eight candidate sources of
TeV emission are detected with pre-trials significance $>4.5\sigma$ in the
region of Galactic longitude $l\in[30^\circ,220^\circ]$ and latitude
$b\in[-10^\circ,10^\circ]$. Four of these sources, including the Crab nebula
and the recently published MGRO J2019+37, are observed with significances
$>4\sigma$ after accounting for the trials involved in searching the 3800
square degree region. All four of these sources are also coincident with EGRET
sources. Two of the lower significance sources are coincident with EGRET
sources and one of these sources is Geminga. The other two candidates are in
the Cygnus region of the Galaxy. Several of the sources appear to be spatially
extended. The fluxes of the sources at 20 TeV range from ~25% of the Crab flux
to nearly as bright as the Crab.Comment: Submitted to Ap
MRI is one of the most dynamic and safe imaging techniques available in the clinic today. However, MRI acquisitions tend to be slow, limiting patient throughput and limiting potential indications for use while driving up costs. Compressed sensing (CS) is a method for accelerating MRI acquisition by acquiring less data through undersampling of k-space. This has the potential to mitigate the time-intensiveness of MRI. The limited body of research evaluating the effects of CS on MR images has been mostly positive with regards to its potential as a clinical tool. Studies have successfully accelerated MRI with this technology, with varying degrees of success. However, more must be performed before its diagnostic efficacy and benefits are clear. Studies involving a greater number radiologists and images must be completed, rating CS based on its diagnostic efficacy. Also, standardized methods for determining optimal imaging parameters must be developed.
Results are presented of a harmonic analysis of the large scale cosmic-ray anisotropy as observed by the Milagro observatory. We show a two-dimensional display of the sidereal anisotropy projections in right ascension generated by the fitting of three harmonics to 18 separate declination bands. The Milagro observatory is a water Cherenkov detector located in the Jemez mountains near Los Alamos, New Mexico. With a high duty cycle and large field-of-view, Milagro
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.