SpringerBriefs in Optimization showcases algorithmic and theoretical techniques, case studies, and applications within the broad-based field of optimization. Manuscripts related to the ever-growing applications of optimization in applied mathematics, engineering, medicine, economics, and other applied sciences are encouraged. This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) PrefaceBefore I speak, I have something important to say. Groucho MarxIn the literature there exist a lot of traditional local search techniques that have been designed for problems where the objective function F(y), y ∈ D ⊂ R N , has only one optimum and a strong a priori information is known about F(y) (for instance, it is supposed that F(y) is convex and differentiable). In such cases it is used to speak about local optimization problems. However, in practice the objects and systems to be optimized are frequently such that the respective objective function F(y) does not satisfy these strong suppositions. In particular, F(y) can be multiextremal with an unknown number of local extrema, non-differentiable, each function evaluation can be a very time-consuming operation (from minutes to hours for just one evaluation of F(y) on the fastest existing computers), and nothing is known about the inter...
Some powerful algorithms for multi-extremal non-convex-constrained optimization problems are based on reducing these multi-dimensional problems to those of one dimension by applying Peano-type space-filling curves mapping a unit interval on the real axis onto a multi-dimensional hypercube. Here is presented and substantiated a new scheme simultaneously employing several joint Peano-type scannings which conducts the property of nearness of points in many dimensions to a property of nearness of pre-images of these points in one dimension significantly better than in the case of a scheme with a single space-filling curve. Sufficient conditions of global convergence for the new scheme are investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.