We investigate algorithms for computing steady state electromagnetic waves in cavities. The Maxwell equations for the strength of the electric field are solved by a mixed method with quadratic finite edge (Nédélec) elements for the field values and corresponding node-based finite elements for the Lagrange multiplier. This approach avoids so-called spurious modes which are introduced if the divergence-free condition for the electric field is not treated properly. To compute a few of the smallest positive eigenvalues and corresponding eigenmodes of the resulting large sparse matrix eigenvalue problems, two algorithms have been used: the implicitly restarted Lanczos algorithm and the Jacobi-Davidson algorithm, both with shift-and-invert spectral transformation. Two-level hierarchical basis preconditioners have been employed for the iterative solution of the resulting systems of equations.
The sparse matrix-vector product is an important computational kernel that runs ineffectively on many computers with super-scalar RISC processors. In this paper we analyse the performance of the sparse matrix-vector product with symmetric matrices originating from the FEM and describe techniques that lead to a fast implementation. It is shown how these optimisations can be incorporated into an efficient parallel implementation using messagepassing. We conduct numerical experiments on many different machines and show that our optimisations speed up the sparse matrix-vector multiplication substantially.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.