Bark beetles play an important role as agents of natural renovation and regeneration in coniferous forests. Several studies have documented the metabolic capacity of bacteria associated with the gut, body surface, and oral secretions of these insects; however, little is known about how the bacterial community structure changes during the life cycle of the beetles. This study represents the first comprehensive analysis of the bacterial community of the gut of the bark beetle D. rhizophagus during the insect’s life cycle using 454 pyrosequencing. A total of 4 bacterial phyla, 7 classes, 15 families and 23 genera were identified. The α-diversity was low, as demonstrated in previous studies. The dominant bacterial taxa belonged to the Enterobacteriaceae and Pseudomonadaceae families. This low α-diversity can be attributed to the presence of defensive chemical compounds in conifers or due to different morpho-physiological factors in the gut of these insects acting as strong selective factors. Members of the genera Rahnella, Serratia, Pseudomonas and Propionibacterium were found at all life stages, and the first three genera, particularly Rahnella, were predominant suggesting the presence of a core microbiome in the gut. Significant differences in β-diversity were observed, mainly due to bacterial taxa present at low frequencies and only in certain life stages. The predictive functional profiling indicated metabolic pathways related to metabolism of amino acids and carbohydrates, and membrane transport as the most significant in the community. These differences in the community structure might be due to several selective factors, such as gut compartmentalization, physicochemical conditions, and microbial interactions.
Dendroctonus bark beetles are a worldwide significant pest of conifers. This genus comprises 20 species found in North and Central America, and Eurasia. Several studies have documented the microbiota associated with these bark beetles, but little is known regarding how the gut bacterial communities change across host range distribution. We use pyrosequencing to characterize the gut bacterial communities associated with six populations of Dendroctonus valens and D. mexicanus each across Mexico, determine the core bacteriome of both insects and infer the metabolic pathways of these communities with Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) to evaluate whether these routes are conserved across geographical locations. Our results show that the β-diversity with UniFrac unweighted varies among locations of both bark beetles mainly due to absence/presence of some rare taxa. No association is found between the pairwise phylogenetic distance of bacterial communities and geographic distance. A strict intraspecific core bacteriome is determined for each bark beetle species, but these cores are different in composition and abundance. However, both bark beetles share the interspecific core bacteriome recorded previously for the Dendroctonus genus consisting of Enterobacter, Pantoea, Providencia, Pseudomonas, Rahnella, and Serratia. The predictions of metabolic pathways are the same in the different localities, suggesting that they are conserved through the geographical locations.
Symbioses between plants and microorganims have been fundamental in the evolution of both groups. The endophytic bacteria associated with conifers have been poorly studied in terms of diversity, ecology, and function. Coniferous trees of the genera Larix, Pseudotsugae, Picea and mainly Pinus, are hosts of many insects, including bark beetles and especially the Dendroctonus species. These insects colonize and kill these trees during their life cycle. Several bacteria detected in the gut and cuticle of these insects have been identified as endophytes in conifers. In this study, we characterized and compared the endophytic bacterial diversity in roots, phloem and bark of non-attacked saplings of Pinus arizonica and P. durangensis using 16S rRNA gene pyrosequencing. In addition, we evaluated the degree of taxonomic relatedness, and the association of metabolic function profiles of communities of endophytic bacteria and previously reported gut bacterial communities of D. rhizophagus; a specialized bark beetle that colonizes and kills saplings of these pine species. Our results showed that both pine species share a similar endophytic community. A total of seven bacterial phyla, 14 classes, 26 orders, 43 families, and 51 genera were identified. Enterobacteriaceae was the most abundant family across all samples, followed by Acetobacteraceae and Acidobacteriaceae, which agree with previous studies performed in other pines and conifers. Endophytic communities and that of the insect gut were significantly different, however, the taxonomic relatedness of certain bacterial genera of pines and insect assemblages suggested that some bacteria from pine tissues might be the same as those in the insect gut. Lastly, the metabolic profile using PICRUSt showed there to be a positive association between communities of both pines and insect gut. This study represents the baseline into the knowledge of the endophytic bacterial communities of two of the major hosts affected by D. rhizophagus.
Sodium hypochlorite (NaClO) and its active ingredient, hypochlorous acid (HClO), are the most widely used chlorine-based disinfectants. HClO is a fast-acting antimicrobial that interacts with many biomolecules, including amino acids, lipids, nucleic acids, and sulfur containing membrane components, causing cell damage. In this review, we present examples of the effectiveness of chlorine in general disinfection procedures to inactivate bacteria and, under some conditions, bacteria in biofilms and viruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.