Electrosynthetic methods are crucial for a future sustainable transformation of the chemical industry. Being an integral part of many synthetic pathways, the electrification of hydrogenation reactions gained increasing interest in...
The utilization of light and inexpensive catalysts to afford hydrogen represents a huge challenge. Following our interest in silicon-containing [FeFe]-hydrogenase ([FeFe]-H2ase) mimics, we report a new model approach for a photocatalytic [FeFe]-H2ase mimic 1, which contains a 1-silafluorene unit as a photosensitizer. Thereby, the photoactive ligand is linked to the [2Fe2S] cluster through S–CH2–Si bridges. Photochemical H2 evolution experiments were performed and revealed a turnover number (TON) of 29. This is the highest reported photocatalytic efficiency for an [FeFe]-H2ase model complex in which the photosensitizer is covalently linked to the catalytic center
It is successfully shown that photocatalytic proton reduction to dihydrogen in the presence of a sacrificial electron donor, such as trimethylamine (TEA) and ascorbate, can be driven by compact sensitizer-catalyst dyads, that is, dithiolate-bridged [FeFe] hydrogenase models tethered to organic sensitizers, such as fluorenes and silafluorenes (1 a-4 a). The sensitizer-catalyst dyads 1 a-4 a show remarkable and promising catalytic activities as well as enhanced stabilities during photocatalysis performed under UV-light irradiation. The photocatalysis was carried out both in non-aqueous and aqueous media. The latter experiments were performed by solubilizing the photocatalysts within micelles formed by either sodium dodecyl sulfate (SDS) or cetyltrimethylammonium bromide (CTAB). In this study a turnover number of 539 (7 h) is achieved under optimized conditions, which corresponds to an exceptionally high turnover frequency of 77 h . Theoretical investigations as well as emission decay experiments were performed to understand the observed phenomena together with the mechanisms of photocatalytic H generation.
To learn from Nature how to create an efficient hydrogen-producing catalyst, much attention has been paid to the investigation of structural and functional biomimics of the active site of [FeFe]-hydrogenase. To understand their catalytic activities, the μ-S atoms of the dithiolate bridge have been considered as possible basic sites during the catalytic processes. For this reason, a series of [FeFe]-H2 ase mimics have been synthesized and characterized. Different [FeFe]-hydrogenase model complexes containing bulky Si-heteroaromatic systems or fluorene directly attached to the dithiolate moiety as well as their mono-PPh3 -substituted derivatives have been prepared and investigated in detail by spectroscopic, electrochemical, X-ray diffraction, and computational methods. The assembly of the herein reported series of complexes shows that the μ-S atoms can be a favored basic site in the catalytic process. Small changes in the (hetero)-aromatic system of the dithiolate moiety are responsible for large differences in their structures. This was elucidated in detail by DFT calculations, which were consistent with the experimental results.
The [FeFe] hydrogenase is a highly sophisticated enzyme for the synthesis of hydrogen via a biological route. The rotated state of the H-cluster in the [Fe(I)Fe(I)] form was found to be an indispensable criteria for an effective catalysis. Mimicking the specific rotated geometry of the [FeFe] hydrogenase active site is highly challenging as no protein stabilization is present in model compounds. In order to simulate the sterically demanding environment of the nature's active site, the sterically crowded meso-bis(benzylthio)diphenylsilane (2) was utilized as dithiolate linker in an [2Fe2S] model complex. The reaction of the obtained hexacarbonyl complex 3 with 1,2-bis(dimethylphosphino)ethane (dmpe) results three different products depending on the amount of dmpe used in this reaction: [{Fe2(CO)5{μ-(SCHPh)2SiPh2}}2(μ-dmpe)] (4), [Fe2(CO)5(κ(2)-dmpe){μ-(SCHPh)2SiPh2}] (5) and [Fe2(CO)5(μ-dmpe){μ-(SCHPh)2SiPh2}] (6). Interestingly, the molecular structure of compound 5 shows a [FeFe] subsite comprising a semi-rotated conformation, which was fully characterized as well as the other isomers 4 and 6 by elemental analysis, IR and NMR spectroscopy, X-ray diffraction analysis (XRD) and DFT calculations. The herein reported model complex is the first example so far reported for [Fe(I)Fe(I)] hydrogenase model complex showing a semi-rotated geometry without the need of stabilization via agostic interactions (Fe···H-C).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.