Background: Right heart catheterisation (RHC) using exercise-stress is the reference standard for the diagnosis of heart failure with preserved ejection fraction (HFpEF) but carries the risk of the invasive procedure. We hypothesized that real-time cardiovascular magnetic resonance (RT-CMR) exercise imaging with pathophysiologic data at excellent temporal and spatial resolution may represent a contemporary non-invasive alternative for diagnosing HFpEF. Methods: The HFpEF stress trial (DZHK-17, NCT03260621) prospectively recruited 75 patients with echocardiographic signs of diastolic dysfunction and dyspnea on exertion (E/e'>8, New York Heart Association (NYHA) class ≥II) to undergo echocardiography, RHC and RT-CMR at rest and during exercise-stress. HFpEF was defined according to pulmonary capillary wedge pressure (PCWP ≥15mmHg at rest or ≥25mmHg during exercise stress). RT-CMR functional assessments included time-volume curves for total and early (1/3) diastolic left ventricular (LV) filling, left atrial (LA) emptying and LV/LA long axis strain (LAS). Results: HFpEF patients (n=34, median PCWP rest 13mmHg, stress 27mmHg) had higher E/e' (12.5 vs. 9.15), NT-proBNP (255 vs. 75ng/l) and LA volume index (43.8 vs. 36.2ml/m 2 ) compared to non-cardiac dyspnea patients (n=34, rest 8mmHg, stress 18mmHg, p≤0.001 for all). Seven patients were excluded due to the presence of non HFpEF cardiac disease causing dyspnea on imaging. There were no differences in RT-CMR LV total and early diastolic filling at rest and during exercise-stress (p≥0.164) between HFpEF and non-cardiac dyspnea. RT-CMR revealed significantly impaired LA total and early (p<0.001) diastolic emptying in HFpEF during exercise-stress. RT-CMR exercise-stress LA LAS was independently associated with HFpEF (adjusted odds ratio 0.657, 95% confidence interval [0.516; 0.838], p=0.001) after adjustment for clinical and imaging parameters and emerged as the best predictor for HFpEF (area under the curve rest 0.82 vs. exercise-stress 0.93, p=0.029). Conclusions: RT-CMR allows highly accurate identification of HFpEF during physiological exercise and qualifies as a suitable non-invasive diagnostic alternative. These results will need to be confirmed in multi-centre prospective research studies to establish widespread routine clinical use. Clinical Trial Registration: URL: https://www.clinicaltrials.gov Unique Identifier: NCT03260621
AimSince cardiovascular magnetic resonance feature-tracking (CMR-FT) has been demonstrated to be of incremental clinical merit we investigated the interchangeability of global left and right ventricular strain parameters between different CMR-FT software solutions.Material and methodsCMR-cine images of 10 patients without significant reduction in LVEF and RVEF and 10 patients with a significantly impaired systolic function were analyzed using two different types of FT-software (TomTec, Germany; QStrain, Netherlands). Global longitudinal strains (LV GLS, RV GLS), global left ventricular circumferential (GCS) and radial strains (GRS) were assessed. Differences in intra- and inter-observer variability within and between software types based on single and up to three repeated and subsequently averaged measurements were evaluated.ResultsInter-vendor agreement was highest for GCS followed by LV GLS. GRS and RV GLS showed lower inter-vendor agreement. Variability was consistently higher in healthy volunteers as compared to the patient group. Intra-vendor reproducibility was excellent for GCS, LV GLS and RV GLS, but lower for GRS. The impact of repeated measurements was most pronounced for GRS and RV GLS on an intra-vendor level.ConclusionCardiac pathology has no influence on CMR-FT reproducibility. LV GLS and GCS qualify as the most robust parameters within and between individual software types. Since both parameters can be interchangeably assessed with different software solutions they may enter the clinical arena for optimized diagnostic and prognostic evaluation of cardiovascular morbidity and mortality in various pathologies.
BackgroundCardiovascular magnetic resonance feature tracking (CMR-FT) is increasingly used for myocardial deformation assessment including ventricular strain, showing prognostic value beyond established risk markers if used in experienced centres. Little is known about the impact of appropriate training on CMR-FT performance. Consequently, this study aimed to evaluate the impact of training on observer variance using different commercially available CMR-FT software.MethodsIntra- and inter-observer reproducibility was assessed prior to and after dedicated one-hour observer training. Employed FT software included 3 different commercially available platforms (TomTec, Medis, Circle). Left (LV) and right (RV) ventricular global longitudinal as well as LV circumferential and radial strains (GLS, GCS and GRS) were studied in 12 heart failure patients and 12 healthy volunteers.ResultsTraining improved intra- and inter-observer reproducibility. GCS and LV GLS showed the highest reproducibility before (ICC >0.86 and >0.81) and after training (ICC >0.91 and >0.92). RV GLS and GRS were more susceptible to tracking inaccuracies and reproducibility was lower. Inter-observer reproducibility was lower than intra-observer reproducibility prior to training with more pronounced improvements after training. Before training, LV strain reproducibility was lower in healthy volunteers as compared to patients with no differences after training. Whilst LV strain reproducibility was sufficient within individual software solutions inter-software comparisons revealed considerable software related variance.ConclusionObserver experience is an important source of variance in CMR-FT derived strain assessment. Dedicated observer training significantly improves reproducibility with most profound benefits in states of high myocardial contractility and potential to facilitate widespread clinical implementation due to optimized robustness and diagnostic performance.
AimsThe exact pathophysiology of Takotsubo syndrome (TTS) remains not fully understood with most studies focussing on ventricular pathology. Since atrial involvement may have a significant role, we assessed the diagnostic and prognostic potential of atrial cardiovascular magnetic resonance feature tracking (CMR-FT) in TTS.Methods and resultsThis multicentre study recruited 152 TTS patients who underwent CMR on average within 3 days after hospitalization. Reservoir [total strain εs and peak positive strain rate (SR) SRs], conduit (passive strain εe and peak early negative SRe), and booster pump function (active strain εa and peak late negative SRa) were assessed in a core laboratory. Results were compared with 21 control patients with normal biventricular function. A total of 20 patients underwent follow-up CMR (median 3.5 months, interquartile range 3–5). All patients were approached for general follow-up. Left atrial (LA) but not right atrial (RA) reservoir and conduit function were impaired during the acute phase (εs: P = 0.043, εe: P < 0.001, SRe: P = 0.047 vs. controls) and recovered until follow-up (εs: P < 0.001, SRs: P = 0.04, εe: P = 0.001, SRe: P = 0.04). LA and RA booster pump function were increased in the acute setting (LA-εa: P = 0.045, SRa: P = 0.002 and RA-εa: P = 0.004, SRa: P = 0.002 vs. controls). LA-εs predicted mortality [hazard ratio 1.10, 95% confidence interval (CI) 1.01–1.20; P = 0.037] irrespectively of established cardiovascular risk factors (P = 0.019, multivariate analysis) including left ventricular ejection fraction (LVEF) (area under the curve 0.71, 95% CI 0.55–0.86, P = 0.048).ConclusionTTS pathophysiology comprises transient impairments in LA reservoir and conduit functions and enhanced bi-atrial active booster pump functions. Atrial CMR-FT may evolve as a superior marker of adverse events over and above established parameters such as LVEF and atrial volume.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.