Central to the chaperone function of Hsp70s is the transition between open and closed conformations of their polypeptide substrate binding domain (SBD), which is regulated through an allosteric mechanism via ATP binding and hydrolysis in their nucleotide binding domain (NBD). Although the structure of the closed conformation of Hsp70s is well studied, the open conformation has remained elusive. Here, we report on the 2.4 Å crystal structure of the ATP-bound open conformation of the Escherichia coli Hsp70 homolog DnaK. In the open DnaK structure, the β sheet and α-helical lid subdomains of the SBD are detached from one another and docked to different faces of the NBD. The contacts between the β sheet subdomain and the NBD reveal the mechanism of allosteric regulation. In addition, we demonstrate that docking of the β sheet and α-helical lid subdomains to the NBD is a sequential process influenced by peptide and protein substrates.
Efficient targeting of Hsp70 chaperones to substrate proteins depends on J-domain cochaperones, which in synergism with substrates trigger ATP hydrolysis in Hsp70s and concomitant substrate trapping. We present the crystal structure of the J-domain of Escherichia coli DnaJ in complex with the E. coli Hsp70 DnaK. The J-domain interacts not only with DnaK's nucleotide-binding domain (NBD) but also with its substrate-binding domain (SBD) and packs against the highly conserved interdomain linker. Mutational replacement of contacts between J-domain and SBD strongly reduces the ability of substrates to stimulate ATP hydrolysis in the presence of DnaJ and compromises viability at heat shock temperatures. Our data demonstrate that the J-domain and the substrate do not deliver completely independent signals for ATP hydrolysis, but the J-domain, in addition to its direct influence on Hsp70s catalytic center, makes Hsp70 more responsive for the hydrolysis-inducing signal of the substrate, resulting in efficient substrate trapping.
Central to the protein folding activity of Hsp70 chaperones is their ability to interact with protein substrates in an ATP-controlled manner, which relies on allosteric regulation between their nucleotide-binding (NBD) and substrate-binding domains (SBD). Here we dissect this mechanism by analysing mutant variants of the Escherichia coli Hsp70 DnaK blocked at distinct steps of allosteric communication. We show that the SBD inhibits ATPase activity by interacting with the NBD through a highly conserved hydrogen bond network, and define the signal transduction pathway that allows bound substrates to trigger ATP hydrolysis. We identify variants deficient in only one direction of allosteric control and demonstrate that ATP-induced substrate release is more important for chaperone activity than substrate-stimulated ATP hydrolysis. These findings provide evidence of an unexpected dichotomic allostery mechanism in Hsp70 chaperones and provide the basis for a comprehensive mechanical model of allostery in Hsp70s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.