The strong development of solid-state power sources offers numerous benefits (such as higher operating frequencies and reduced switching times and power losses), but contributes inherently to the extended range of electromagnetic interferences (EMI). As these systems are associated with a set of embedded monitoring devices using low amplitude signals, it becomes necessary to consider new critical cases of electromagnetic (EM) immunity correlated to such environments. The most common solution against aggressive radiated EMI is the metallic enclosure, which brings a strong shielding effectiveness (SE), but is it always the best compromise? Our study in this paper is focused on the SE of multilayer designs and is therefore intended to optimize the enclosures’ compactness for board level shielding (BLS) on printed circuit boards (PCB). First, results are presented, based on metallic multilayer shielding theory and parametric numerical studies in the intentional electromagnetic interferences (IEMI) frequency range, from 0.2 to 5 GHz. Then, a complete 3D EM co-simulation model using the microwave and design modules of CST Studio Suite (which includes the subject, the EMI radiating source, and the multilayer shielding) is proposed, with emphasis on the pertinent choices regarding layers width and their arrangement for compact EM shielding and immunity optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.