On account of environmental concerns, the fate and adverse effects of plastics have attracted considerable interest in the past few years. Recent studies have indicated the potential for fragmentation of plastic materials into nanoparticles, i.e., "nanoplastics," and their possible accumulation in the environment. Nanoparticles can show markedly different chemical and physical properties than their bulk material form. Therefore possible risks and hazards to the environment need to be considered and addressed. However, the fate and effect of nanoplastics in the (aquatic) environment has so far been little explored. In this review, we aim to provide an overview of the literature on this emerging topic, with an emphasis on the reported impacts of nanoplastics on human health, including the challenges involved in detecting plastics in a biological environment. We first discuss the possible sources of nanoplastics and their fates and effects in the environment and then describe the possible entry routes of these particles into the human body, as well as their uptake mechanisms at the cellular level. Since the potential risks of environmental nanoplastics to humans have not yet been extensively studied, we focus on studies demonstrating cell responses induced by polystyrene nanoparticles. In particular, the influence of particle size and surface chemistry are discussed, in order to understand the possible risks of nanoplastics for humans and provide recommendations for future studies.
Realization of the immense potential of nanomaterials for biomedical applications will require a thorough understanding of how they interact with cells, tissues, and organs. There is evidence that, depending on their physicochemical properties and subsequent interactions, nanomaterials are indeed taken up by cells. However, the subsequent release and/or intracellular degradation of the materials, transfer to other cells, and/or translocation across tissue barriers are still poorly understood. The involvement of these cellular clearance mechanisms strongly influences the long-term fate of used nanomaterials, especially if one also considers repeated exposure. Several nanomaterials, such as liposomes and iron oxide, gold, or silica nanoparticles, are already approved by the American Food and Drug Administration for clinical trials; however, there is still a huge gap of knowledge concerning their fate in the body. Herein, clinically relevant nanomaterials, their possible modes of exposure, as well as the biological barriers they must overcome to be effective are reviewed. Furthermore, the biodistribution and kinetics of nanomaterials and their modes of clearance are discussed, knowledge of the long-term fates of a selection of nanomaterials is summarized, and the critical points that must be considered for future research are addressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.