We present a novel approach to regular, multi-dimensional arrays in Haskell. The main highlights of our approach are that it (1) is purely functional, (2) supports reuse through shape polymorphism, (3) avoids unnecessary intermediate structures rather than relying on subsequent loop fusion, and (4) supports transparent parallelisation.We show how to embed two forms of shape polymorphism into Haskell's type system using type classes and type families. In particular, we discuss the generalisation of regular array transformations to arrays of higher rank, and introduce a type-safe specification of array slices.We discuss the runtime performance of our approach for three standard array algorithms. We achieve absolute performance comparable to handwritten C code. At the same time, our implementation scales well up to 8 processor cores.
We describe the design and current status of our effort to implement the programming model of nested data parallelism into the Glasgow Haskell Compiler. We extended the original programming model and its implementation, both of which were first popularised by the NESL language, in terms of expressiveness as well as efficiency. Our current aim is to provide a convenient programming environment for SMP parallelism, and especially multicore architectures. Preliminary benchmarks show that we are, at least for some programs, able to achieve good absolute performance and excellent speedups.
We present a novel approach to regular, multi-dimensional arrays in Haskell. The main highlights of our approach are that it (1) is purely functional, (2) supports reuse through shape polymorphism, (3) avoids unnecessary intermediate structures rather than relying on subsequent loop fusion, and (4) supports transparent parallelisation.We show how to embed two forms of shape polymorphism into Haskell's type system using type classes and type families. In particular, we discuss the generalisation of regular array transformations to arrays of higher rank, and introduce a type-safe specification of array slices.We discuss the runtime performance of our approach for three standard array algorithms. We achieve absolute performance comparable to handwritten C code. At the same time, our implementation scales well up to 8 processor cores.
This paper presents an automatic deforestation system, stream fusion, based on equational transformations, that fuses a wider range of functions than existing short-cut fusion systems. In particular, stream fusion is able to fuse zips, left folds and functions over nested lists, including list comprehensions. A distinguishing feature of the framework is its simplicity: by transforming list functions to expose their structure, intermediate values are eliminated by general purpose compiler optimisations.We have reimplemented the Haskell standard List library on top of our framework, providing stream fusion for Haskell lists. By allowing a wider range of functions to fuse, we see an increase in the number of occurrences of fusion in typical Haskell programs. We present benchmarks documenting time and space improvements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.