Glucose plays an important role in cell metabolism and has an impact on cellular physiology. Changes in glucose availability may strongly influence growth rate of the cell size, cell metabolism and the rate of generation of cellular by-products, such as reactive oxygen species. The positive effect of low glucose concentration conditions-calorie restriction is observed in a wide range of species, including the Saccharomyces cerevisiae yeast, yet little is known about the effect of high glucose concentrations-calorie excess. Such analysis seems to be particularly important due to recently common problem of diabetes and obesity. The effect of glucose on morphological and physiological parameters of the yeast cell was conducted using genetic alteration (disruption of genes involved in glucose signalling) and calorie restriction and calorie excess conditions. The results show a significant relationship among extracellular glucose concentration, cell size and reactive oxygen species generation in yeast cells. Furthermore, the results obtained through the use of mutant strains with disorders in glucose signalling pathways suggest that the intracellular level of glucose is more important than its extracellular concentration. These data also suggest that the calorie excess as a factor, which has a significant impact on cell physiology, requires further comprehensive analyses.
Carbohydrates are dietary nutrients that have an influence on cells physiology, cell reproductive capacity and, consequently, the lifespan of organisms. They are used in cellular processes after conversion to glucose, which is the primary source of energy and carbon skeleton for biosynthetic processes. Studies of the influence of glucose on cellular parameters and lifespan of organisms are primarily concerned with the effect of low glucose concentration defined as calorie restriction conditions. However, the effect of high glucose concentration on cell physiology is also very important. Thus, a comparative analysis of the effects of low and high glucose concentration conditions on cell efficiency was proposed with regard to reproductive capacity and total lifespan of the cell. Glucose concentration determines the type of metabolism and biosynthetic capabilities, which in turn, through the regulation on the cell size, may affect the reproductive capacity of cells. This study was conducted on yeast cells of wild‐type and mutant strains Δgpa2 and Δgpr1 with glucose signalling pathway impairment. Such an experimental model enabled testing both the role of glucose concentration in the regulation of metabolic changes and the extent to which these changes depend on the extracellular or intracellular glucose concentrations. It has been shown here that calorie/glucose excess connected with changes in cell metabolic fluxes increases biosynthetic capabilities of yeast cells. This leads to an increase in cell dry weight accompanied by the increase in cell size and a simultaneous decrease in the reproductive potential and the overall length of cell life.
Saccharomyces cerevisiae yeast cells may generate energy both by fermentation and aerobic respiration, which are dependent on the type and availability of carbon sources. Cells adapt to changes in nutrient availability, which entails the specific costs and benefits of different types of metabolism but also may cause alteration in redox homeostasis, both by changes in reactive oxygen species (ROS) and in cellular reductant molecules contents. In this study, yeast cells devoid of the SOD1 or SOD2 gene and fermentative or respiratory conditions were used to unravel the connection between the type of metabolism and redox status of cells and also how this affects selected parameters of cellular physiology. The performed analysis provides an argument that the source of ROS depends on the type of metabolism and non-mitochondrial sources are an important pool of ROS in yeast cells, especially under fermentative metabolism. There is a strict interconnection between carbon metabolism and redox status, which in turn has an influence on the physiological efficiency of the cells. Furthermore, pyridine nucleotide cofactors play an important role in these relationships.
Intermediary metabolites have a crucial impact on basic cell functions. There is a relationship between cellular metabolism and redox balance. To maintain redox homoeostasis, the cooperation of both glutathione and nicotine adenine dinucleotides is necessary. Availability of nicotinamide adenine dinucleotide phosphate (NADPH) as a major electron donor is critical for many intracellular redox reactions. The activity of glucose‐6‐phosphate dehydrogenase (Zwf1p) and 6‐phosphogluconate dehydrogenase (Gnd1p and Gnd2p) is responsible for NADPH formation in a pentose phosphate (PP) pathway. In this study, we examine the impact of redox homoeostasis on cellular physiology and proliferation. We have noted that the Δzwf1 mutant lacking the rate‐limiting enzyme of the PP pathway shows changes in the cellular redox status caused by disorders in NADPH generation. This leads to a decrease in reproductive potential but without affecting the total lifespan of the cell. The results presented in this paper show that nicotine adenine dinucleotides play a central role in cellular physiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.