Both aggressive and aggression-deprived (AD) species represent pathologic cases intensely addressed in psychiatry and substance abuse disciplines. Previously, we reported that AD mice displayed a higher aggressive behavior score than the aggressive group, implying the manifestation of a withdrawal effect. We employed an animal model of chronic social conflicts, curated in our lab for more than 30 years. In the study, we pursued the task of evaluating key events in the dorsal striatum transcriptome of aggression experienced mice and AD species compared to controls using RNA-Seq profiling. Aggressive species were subjected to repeated social conflict encounters (fights) with regular positive (winners) experience in the course of 20 consecutive days (A20 group). This led to a profoundly shifted transcriptome expression profile relative to the control group, outlined by more than 1000 differentially expressed genes (DEGs). RNA-Seq cluster analysis revealed that elevated cyclic AMP (cAMP) signaling cascade and associated genes comprising 170 differentially expressed genes (DEGs) in aggressive (A20) species were accompanied by a downturn in the majority of other metabolic/signaling gene networks (839 DEGs) via the activation of transcriptional repressor DEGs. Fourteen days of a consecutive fighting deprivation period (AD group) featured the basic restoration of the normal (control) transcriptome expression profile yielding only 62 DEGs against the control. Notably, we observed a network of 12 coordinated DEG Transcription Factor (TF) activators from 62 DEGs in total that were distinctly altered in AD compared to control group, underlining the distinct transcription programs featuring AD group, partly retained from the aggressive encounters and not restored to normal in 14 days. We found circadian clock TFs among them, reported previously as a withdrawal effect factor. We conclude that the aggressive phenotype selection with positive reward effect (winning) manifests an addiction model featuring a distinct opioid-related withdrawal effect in AD group. Along with reporting profound transcriptome alteration in A20 group and gaining some insight on its specifics, we outline specific TF activator gene networks associated with transcriptional repression in affected species compared to controls, outlining Nr1d1 as a primary candidate, thus offering putative therapeutic targets in opioid-induced withdrawal treatment.
BackgroundFat mass and obesity-associated (FTO) gene has been under close investigation since the discovery of its high impact on the obesity status in 2007 by a range of publications. Recent report on its implication in adipocytes underscored its molecular and functional mechanics in pathology. Still, the population specific features of the locus structure have not been approached in detail.MethodsWe analyzed the population specific haplotype profiles of FTO genomic locus identified by Genome Wide Association Studies (GWAS) for the high obesity risk by examining eighteen 1000G populations from 4 continental groups. The GWAS SNPs cluster is located in the FTO gene intron 1 spanning around 70 kb.ResultsWe reconstructed the ancestral state of the locus, which comprised low-risk major allele found in all populations, and two minor risk-associated alleles, each one specific for African and European populations, correspondingly. The locus structure and its allele frequency distribution underscore the high risk allele frequency specifically for the European population. South Asian populations have the second highest frequency of risk alleles, while East Asian populations have the lowest. African population-specific minor allele was only partially risk-associated. All of the GWAS SNPs considered are manifested by low risk alleles as reference (major) ones (p > 0.5) in each of the continental groups. Strikingly, rs1421085, recently reported as a causal SNP, was found to be monomorphic in ancestral (African) populations, implying possible selection sweep in the course of its rapid fixation, as reported previously.ConclusionThe observations underscore varying FTO -linked risk in the manifestation of population specific epidemiology of genetically bound obesity. The results imply that the FTO locus is one of the major genetic determinants for obesity risk from GWAS SNPs set.Electronic supplementary materialThe online version of this article (10.1186/s12920-019-0491-x) contains supplementary material, which is available to authorized users.
Understanding how repeated stress affects metabolic and physiological functions in the long run is of crucial importance for evaluating anthropogenic pressure on the environment. We investigated fertility, longevity and metabolism in D. melanogaster females exposed to short-term heat stress (38 °C, 1 h) repeated daily or weekly. Daily stress was shown to cause a significant decrease in both fertility and longevity, as well as in body mass and triglyceride (fat) content, but a significant increase in trehalose and glucose content. Weekly stress did not affect longevity and carbohydrate metabolism but resulted in a significant decrease in body mass and fat content. Weekly stress did not affect the total level of fertility, despite sharp fertility drops on the exact days of stressing. However, stressing insects weekly, only in the first two weeks after eclosion, caused a significant increase in the total level of fertility. The analysis of differentially expressed genes in the fat bodies and adjacent tissues of researched groups with the use of RNA-Seq profiling revealed changes in signal pathways related to proteolysis/digestion, heat shock protein 23, and in the tightly linked stress-inducible humoral factor Turandot gene network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.