This paper presents in detail numerical methods and techniques for lightning impulse (LI) modeling and simulation of power and distribution transformers. The modeling methods are based on equivalent circuits of transformer winding entities resulting from the initial winding discretization determined by the required accuracy. The parameters of the equivalent circuit such as resistances and self- and mutual capacitances and inductances are obtained from field simulations (FEM). The circuit equations of the transformer’s equivalent circuit written in the state space form yield a large system of differential equations that is solved in time-domain by using the standard Runge-Kutta numerical integration technique. The obtained solution represents the voltage distribution over the winding in each moment of the LI-time (50μs). The results verification by comparison against measurements is presented in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.