Reinforcement Learning (RL) and Deep Reinforcement Learning (DRL) methods are a promising approach to solving complex tasks in the real world with physical robots. In this paper, we compare several reinforcement learning (Q-Learning, SARSA) and deep reinforcement learning (Deep Q-Network, Deep Sarsa) methods for a task aimed at achieving a specific goal using robotics arm UR3. The main optimization problem of this experiment is to find the best solution for each RL/DRL scenario and minimize the Euclidean distance accuracy error and smooth the resulting path by the Bézier spline method. The simulation and real word applications are controlled by the Robot Operating System (ROS). The learning environment is implemented using the OpenAI Gym library which uses the RVIZ simulation tool and the Gazebo 3D modeling tool for dynamics and kinematics.
Advanced robotics does not always have to be associated with Industry 4.0, but can also be applied, for example, in the Smart Hospital concept. Developments in this field have been driven by the coronavirus disease (COVID-19), and any improvement in the work of medical staff is welcome. In this paper, an experimental robotic platform was designed and implemented whose main function is the swabbing samples from the nasal vestibule. The robotic platform represents a complete integration of software and hardware, where the operator has access to a web-based application and can control a number of functions. The increased safety and collaborative approach cannot be overlooked. The result of this work is a functional prototype of the robotic platform that can be further extended, for example, by using alternative technologies, extending patient safety, or clinical tests and studies. Code is available at https://github.com/Steigner/Robo_Medicinae_I
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.