The submitted contribution deals with the wear of thin coatings applied to convex–concave gearings for gear made from C45E steel. The influence of the tribological characteristics (friction coefficient, wear, adhesion and hardness) of the TiN, TiCN coatings and the combined coating of TiCN + MoS2 on convex–concave gearing is described, from the aspects of scuffing formation. Scuffing tests were done on C–C gears. Coatings were applied by arc–ion-plating (AIP) and magnetron sputter-ion-plating (MSIP) methods. The thickness of the deposited coating and its chemical composition were determined by SEM and EDX analysis. Load-bearing capacity was evaluated by a Niemann tester. The TiCN + MoS2 combined coating with the MoS2 layer on the top reached the lowest coefficient of friction. However, after a rapid wearing of the MoS2 layer, this value dropped to a comparable value of TiCN. The nano-hardness of the TiCN layer was higher in comparison with TiN. Thin and soft MoS2 layers cracked already at lower load levels and separated from the substrate at the 5th load stage. The formation of scuffings for selected coatings documented in this article was solved for convex–concave gearing working also in interaction with Biogear S 150 and Biohyd MS 46 oils.
The structure of steering gear’s HATLAPA mechanism is analyzed. It is shown that presence of redundant constraints in it increases laboriousness of gear montage and respectively worsen maintainability. On the basis of provided analysis developed mechanism with reduced more than twice redundant constrainsts number.
Wear of nonstandard involute gears with two types of coatings, AlCrN and CrAlSiN, was studied. The coatings were applied by cathodic arc deposition. The gears were tested using a Niemann tester at a graduated load up to the 12th load stage and were compared to noncoated gears. Both Biogear S150 gear oil and PP90 universal hydraulic oil were applied during these tests. The thickness of deposited coatings and wear of gear teeth were studied by SEM and their chemical compositions were determined by EDS analysis. Maximal contact pressure of 1350 MPa was calculated in the region of the tooth flank at the 12th load stage. Maximal frictional stress was also calculated on the tooth flank. The resistance against wear of gears was evaluated based on the critical weight loss and mainly based on the critical surface roughness of gears. The critical roughness was exceeded at the 10th load stage for noncoated gears. For the gears with AlCrN and CrAlSiN coatings, the critical roughness was exceeded at the 11th load stage. Wear of AlCrN and CrAlSiN coatings was nonuniform along the height of tooth. Wear on the tooth flank was characterized by fragmentation of thin coatings and subsequent detaching of fragments from the steel substrate. The steel substrate was worn by microcutting, which caused the highest roughness on the tooth surface. On the tooth pitch, surface protrusions of coatings were smoothed, and coatings cracked and locally detached subsequently. On the tooth face, surface protrusions were also smoothed but coatings remained compact without crack initiations. Both experimental oils, Biogear S150 and PP90, proved to be suitable during Niemann tests as their temperatures did not exceed the limit value of 80 °C.
An analytical method for determination of a stress condition of butt welded thin-gauge plates with asymmetrical reinforcement is developed. The proposed method allows take into account the effect of the load application eccentricity on the tensile stress concentration factor (SCF) in the weld root zone. It is presented that the bending stresses, caused by this eccentricity, result in increasing the total stresses up to 75%. The results of analytical SCF calculations are in good agreement with the results obtained using the finite element method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.