We report the first implementation of the calculation of electronic g-tensors by density functional methods with hybrid functionals. Spin-orbit coupling is treated by the atomic meanfield approximation. g-Tensors for a set of small main group radicals and for a series of ten 3d and two 4d transition metal complexes have been compared using the local density approximation (VWN functional), the generalized gradient approximation (BP86 functional), as well as B3-type (B3PW91) and BH-type (BHPW91) hybrid functionals. For main group radicals, the effect of exact-exchange mixing is small. In contrast, significant differences between the various functionals arise for transition metal complexes. As has been shown previously, local and in particular gradient-corrected functionals tend to underestimate the "paramagnetic" contributions to the g-tensors in these cases and thereby recover only about 40-50% of the range of experimental g-tensor components. This is improved to ca. 60% by the B3PW91 functional, which also gives slightly reduced standard deviations. The range increases to almost 100% using the half-and-half functional BHPW91. However, the quality of the correlation with experimental data worsens due to a significant overestimate of some intermediate g-tensor values. The worse performance of the BHPW91 functional in these cases is accompanied by spin contamination. Although none of the functionals tested thus appears to be ideal for the treatment of electronic g-tensors in transition metal complexes, the B3PW91 hybrid functional exhibited the overall most satisfactory performance. Apart from the validation of hybrid functionals, some aspects in the treatment of spin-orbit contributions to the g-tensor are discussed.
The calculation of nuclear shieldings for paramagnetic molecules has been implemented in the ReSpect program, which allows the use of modern density functional methods with accurate treatments of spin-orbit effects for all relevant terms up to order Omicron(alpha4) in the fine structure constant. Compared to previous implementations, the methodology has been extended to compounds of arbitrary spin multiplicity. Effects of zero-field splittings in high-spin systems are approximately accounted for. Validation of the new implementation is carried out for the 13C and 1H NMR signal shifts of the 3d metallocenes 4VCp2, 3CrCp2, 2MnCp2, 6MnCp2, 2CoCp2, and 3NiCp2. Zero-field splitting effects on isotropic shifts tend to be small or negligible. Agreement with experimental isotropic shifts is already good with the BP86 gradient-corrected functional and is further improved by admixture of Hartree-Fock exchange in hybrid functionals. Decomposition of the shieldings confirms the dominant importance of the Fermi-contact shifts, but contributions from spin-orbit dependent terms are frequently also non-negligible. Agreement with 13C NMR shift tensors from solid-state experiments is of similar quality as for isotropic shifts.
Individual molecular orbital (MO) contributions to the magnetic shielding of atoms as well as to the nucleusindependent chemical shifts (NICS) of aromatic compounds can be computed by the widely used gaugeincluding atomic orbital (GIAO) method. Detailed analyses of magnetic shielding MO-NICS contributions provide interpretive insights that complement and extend those given by the localized MO ("dissected NICS", LMO-NICS) method. Applications to (4n + 2) π-electron systems, ranging from [n] annulenes to D nh S 3 , S 5 , and N 6 H 6 2+ rings as well as to D 2h cyclobutadiene, show the extent to which their diatropic character results from the σ framework and from the π orbitals. The diatropicity of both these contributions decreases with the number of nodes of the wave function around the ring. The highest-energy orbitals can become paratropic. This is generally the case with the σ orbitals, but is found only for "electron-rich" π systems such as sulfur rings. MO-NICS contributions, which can be interpreted using London-Hu ¨ckel theory, correlate with inverse ring size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.