Efficiencies of organic solar cells based on an interpenetrating network of a conjugated polymer and a fullerene as donor and acceptor materials still need to be improved for commercial use. We have developed a postproduction treatment that improves the performance of solar cells based on poly(3‐hexylthiophene) (P3HT) and [6,6]‐phenyl C61‐butyric acid methyl ester (PCBM) by means of a tempering cycle at elevated temperatures in which an external voltage is simultaneously applied, resulting in a significant increase of the short‐circuit current. Using this postproduction treatment, an enhancement of the short‐circuit current density, Isc, to 8.5 mA cm–2 under illumination with white light at an illumination intensity of 800 W m–2 and an increase in external quantum efficiency (IPCE, incident photon to collected electron efficiency) to 70 % are demonstrated.
Two crystal structures of PCBM, obtained from different crystallisation solvents, are presented; a proposed link with solvent dependence of the efficiency of MDMO-PPV:PCBM solar cells is described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.