This is the first paper of a two-paper series describing design, implementation and validation of a strain and damage monitoring system for CFRP fuselage stiffened panels based on fiber optic Bragg grating sensors. The monitoring system was developed and tested on the basis of three load-scenarios: compression to failure of the undamaged panel, compression to failure of the impacted panel and compression to failure of the impacted and fatigued panel. This paper focuses on the design of the fuselage panel, the design of the monitoring system, the embedment of fiber sensors in the panel during manufacturing and the impact testing. The network of the sensors was designed based on a numerical buckling analysis from which the strain field of the panel was computed as a function of the applied compressive load. Embedment of fiber sensors in the panel was done so as to minimize risk of fiber breaking during manufacturing and impact testing and to effectively capture strains that are representative of damage developed in the panel due to compressive load. Barely visible and visible low velocity impact damage sites were created at different locations of the panel using a drop-weight impactor. The panels were inspected using C-scan just after manufacturing, to check quality of the material, and just after impact testing to detect impact damage at each location.
Purpose
Compression is critical loading condition for composite airframes. Compression behaviour of structures with or without damages is a weak point for composite fuselage panels. This is one of the reasons for need of continuous in-service health monitoring of composite structures. The purpose of this paper is to characterize the compression panel behaviour on the base of a developed and implemented structural health monitoring (SHM) system.
Design/methodology/approach
The SHM system based on fibre optic Bragg grating (FOBG) sensors and standard resistance strain gauges (SGs) was placed onto/into (embedded or bonded) three stiffened carbon fibre reinforced polymer (CFRP) fuselage panels. The FOBG sensor system was used to monitor the structural integrity of the reference, impacted, and fatigued panels under compression loading. Both barely visible impact damage and visible impact damage were created to evaluate their influence on the panel behaviour. The functionality of the SHM system was verified through mechanical testing.
Findings
Experimental data showed the presence of impact damages significantly changes the buckling modes development and deformation behaviour of the panels. Some differences between the optical and SG sensors during buckling were observed. The buckling waves and failure development were very well indicated during loading by all sensors located on the panel surface but not by the embedded sensors. Good agreement between the data from the SGs and FOBG sensors was achieved for all sensors placed on the stringers, which did not buckle. The good reliability of FOBG sensors during the fatigue and static testing up to panel failure was verified.
Originality/value
The paper gives information about different buckling behaviour of CFRP fuselage stiffened panels in compression. The paper gives detailed information about measured signals from different sensors based on their location on/in the panel structure for realistic loading scenario of composite aerostructures. The paper gives an integrated overview of sensors placement considering possibilities to predicate structure behaviour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.