Influenza impressively reflects the paradigm of a viral disease in which continued evolution of the virus is of paramount importance for annual epidemics and occasional pandemics in humans. Because of the continuous threat of novel influenza outbreaks, it is essential to gather further knowledge about viral pathogenicity determinants. Here, we explored the adaptive potential of the influenza A virus subtype H1N1 variant isolate A/Hamburg/04/09 (HH/04) by sequential passaging in mice lungs. Three passages in mice lungs were sufficient to dramatically enhance pathogenicity of HH/04. Sequence analysis identified 4 nonsynonymous mutations in the third passage virus. Using reverse genetics, 3 synergistically acting mutations were defined as pathogenicity determinants, comprising 2 mutations in the hemagglutinin (HA[D222G] and HA[K163E]), whereby the HA(D222G) mutation was shown to determine receptor binding specificity and the polymerase acidic (PA) protein F35L mutation increasing polymerase activity. In conclusion, synergistic action of all 3 mutations results in a mice lethal pandemic H1N1 virus.
The frequent emergence of new influenza viruses in the human population underlines the urgent need for antiviral therapeutics in addition to the preventative vaccination against the seasonal flu. To circumvent the development of resistance, recent antiviral approaches target cellular proteins needed by the virus for efficient replication. We investigated the contribution of the small GTPase Rac1 to the replication of influenza viruses. Inhibition of Rac1 by NSC23766 resulted in impaired replication of a wide variety of influenza viruses, including a human virus strain of the pandemic from 2009 as well as highly pathogenic avian virus strains. Furthermore, we identified a crucial role of Rac1 for the activity of the viral polymerase complex. The antiviral potential of NSC23766 was confirmed in mouse experiments, identifying Rac1 as a new cellular target for therapeutic treatment of influenza virus infections.
Infections with influenza A viruses (IAV) are still amongst the major causes of highly contagious severe respiratory diseases not only bearing a devastating effect to human health, but also significantly impact the economy. Besides vaccination that represents the best option to protect from IAV infections, only two classes of anti-influenza drugs, inhibitors of the M2 ion channel and the neuraminidase, often causing resistant IAV variants have been approved. That is why the need for effective and amply available antivirals against IAV is of high priority. Here we introduce LADANIA067 from the leaves of the wild black currant (Ribes nigrum folium) as a potent compound against IAV infections in vitro and in vivo. LADANIA067 treatment resulted in a reduction of progeny virus titers in cell cultures infected with prototype avian and human influenza virus strains of different subtypes. At the effective dose of 100 µg/ml the extract did not exhibit apparent harming effects on cell viability, metabolism or proliferation. Further, viruses showed no tendency to develop resistance to LADANIA067 when compared to amantadine that resulted in the generation of resistant variants after only a few passages. On a molecular basis the protective effect of LADANIA067 appears to be mainly due to interference with virus internalisation. In the mouse infection model LADANIA067 treatment reduces progeny virus titers in the lung upon intranasal application. In conclusion, an extract from the leaves of the wild black currant might be a promising source for the development of new antiviral compounds to fight IAV infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.