Background: Peroxynitrite is a cytotoxic oxidant formed from nitric oxide (NO) and superoxide. Tyrosine nitration, a footprint of peroxynitrite, has been demonstrated in the pancreatic islets as well as in the cardiovascular system of diabetic subjects. Delineation of the pathogenetic role of peroxynitrite in disease conditions requires the use of potent, in vivo active peroxynitrite decomposition catalysts. The aim of the current work was to produce a potent peroxynitrite decomposition catalyst and to test its effects in rodent models of diabetes and its complications. Methods: FP15 was synthesized and analyzed using standard chemical methods. Diabetes was triggered by the administration of streptozotocin. Tyrosine nitration was measured immunohistochemically. Cardiovascular and vascular measurements were conducted according to standard physiologic methods. Results: FP15, a potent porphyrinic peroxynitrite decomposition catalyst, potently
Tumorigenesis is a multistep process in which oncogenes play a key role in tumor formation, growth, and maintenance. MET was discovered as an oncogene that is activated by its ligand, hepatocyte growth factor. Deregulated signaling in the c-Met pathway has been observed in multiple tumor types. Herein we report the discovery of potent and selective triazolopyridazine small molecules that inhibit c-Met activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.