Abstract. The set of orbits of GL(V ) in F l(V ) × F l(V ) × V is finite, and is parametrized by the set of certain decorated permutations in a work of Solomon. We describe a Mirabolic RSK correspondence (bijective) between this set of decorated permutations and the set of triples: a pair of standard Young tableaux, and an extra partition. It gives rise to a partition of the set of orbits into combinatorial cells. We prove that the same partition is given by the type of a general conormal vector to an orbit. We conjecture that the same partition is given by the bimodule Kazhdan-Lusztig cells in the bimodule over the Iwahori-Hecke algebra of GL(V ) arising from F l(V ) × F l(V ) × V . We also give conjectural applications to the classification of unipotent mirabolic character sheaves on GL(V ) × V .
Abstract. We compute the Frobenius trace functions of mirabolic character sheaves defined over a finite field. The answer is given in terms of the character values of general linear groups over the finite field, and the structure constants of multiplication in the mirabolic Hall-Littlewood basis of symmetric functions, introduced by Shoji.
Abstract. We prove a version of quantum geometric Langlands conjecture in characteristic p. Namely, we construct an equivalence of certain localizations of derived categories of twisted crystalline D-modules on the stack of rank N vector bundles on an algebraic curve C in characteristic p. The twisting parameters are related in the way predicted by the conjecture, and are assumed to be irrational (i.e., not in Fp). We thus extend the results of [BB] concerning the similar problem for the usual (non-quantum) geometric Langlands.In the course of the proof, we introduce a generalization of p-curvature for line bundles with non-flat connections, define quantum analogs of Hecke functors in characteristic p and construct a Liouville vector field on the space of de Rham local systems on C.
We construct a mirabolic analogue of the geometric Satake equivalence. We also prove an equivalence that relates representations of a supergroup to the category of
$\operatorname{GL}(N-1,{\mathbb {C}}[\![t]\!])$
-equivariant perverse sheaves on the affine Grassmannian of
$\operatorname{GL}_N$
. We explain how our equivalences fit into a more general framework of conjectures due to Gaiotto and to Ben-Zvi, Sakellaridis and Venkatesh.
“Even more so is the word ‘crystalline’, a glacial and impersonal concept of his which disdains viewing existence from a single portion of time and space” Eileen Myles, “The Importance of Being Iceland”
For a smooth variety $X$ over an algebraically closed field of characteristic $p$ to a differential 1-form $\alpha $ on the Frobenius twist $X^{\textrm{(1)}}$ one can associate an Azumaya algebra ${{\mathcal{D}}}_{X,\alpha }$, defined as a certain central reduction of the algebra ${{\mathcal{D}}}_X$ of “crystalline differential operators” on $X$. For a resolution of singularities $\pi :X\to Y$ of an affine variety $Y$, we study for which $\alpha $ the class $[{{\mathcal{D}}}_{X,\alpha }]$ in the Brauer group $\textrm{Br}(X^{\textrm{(1)}})$ descends to $Y^{\textrm{(1)}}$. In the case when $X$ is symplectic, this question is related to Fedosov quantizations in characteristic $p$ and the construction of noncommutative resolutions of $Y$. We prove that the classes $[{{\mathcal{D}}}_{X,\alpha }]$ descend étale locally for all $\alpha $ if ${{\mathcal{O}}}_Y\widetilde{\rightarrow }\pi _\ast{{\mathcal{O}}}_X$ and $R^{1}\pi _*\mathcal O_X = R^2\pi _*\mathcal O_X =0$. We also define a certain class of resolutions, which we call resolutions with conical slices, and prove that for a general reduction of a resolution with conical slices in characteristic $0$ to an algebraically closed field of characteristic $p$ classes $[{{\mathcal{D}}}_{X,\alpha }]$ descend to $Y^{\textrm{(1)}}$ globally for all $\alpha $. Finally we give some examples; in particular, we show that Slodowy slices, Nakajima quiver varieties, and hypertoric varieties are resolutions with conical slices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.