Graphical AbstractHighlights d eEF2 kinase enhances the accuracy of protein synthesis under a range of conditions d mTORC1 inhibition improves translation accuracy by activating eEF2K d eEF2K assists correct start codon selection during translation initiation d Impairing translation fidelity reduces lifespan in C. elegans In BriefXie et al. report that eukaryotic elongation factor 2 kinase (eEF2K), which impairs the rate of elongation, decreases misreading or termination readthrough errors and promotes the correct recognition of start codons in mRNAs. Depletion of the eEF2K ortholog or other factors implicated in translation fidelity in C. elegans decreases lifespan.
Eukaryotic elongation factor 2 kinase (eEF2K) negatively regulates the elongation phase of mRNA translation and hence protein synthesis. Increasing evidence indicates that eEF2K plays an important role in the survival and migration of cancer cells and in tumor progression. As demonstrated by two-dimensional wound-healing and three-dimensional transwell invasion assays, knocking down or inhibiting eEF2K in cancer cells impairs migration and invasion of cancer cells. Conversely, exogenous expression of eEF2K or knocking down eEF2 (the substrate of eEF2K) accelerates wound healing and invasion. Importantly, using LC-HDMS analysis, we identify 150 proteins whose expression is decreased and 73 proteins which are increased upon knocking down eEF2K in human lung carcinoma cells. Of interest, 34 downregulated proteins are integrins and other proteins implicated in cell migration, suggesting that inhibiting eEF2K may help prevent cancer cell mobility and metastasis. Interestingly, eEF2K promotes the association of integrin mRNAs with polysomes, providing a mechanism by which eEF2K may enhance their cellular levels. Consistent with this, genetic knock down or pharmacological inhibition of eEF2K reduces the protein expression levels of integrins. Notably, pharmacological or genetic inhibition of eEF2K almost completely blocked tumor growth and effectively prevented the spread of tumor cells in vivo. High levels of eEF2K expression were associated with invasive carcinoma and metastatic tumors. These data provide the evidence that eEF2K is a new potential therapeutic target for preventing tumor metastasis.
Emerging advances in cancer therapy have transformed the landscape towards cancer immunotherapy regimens. Recent discoveries have resulted in the development of clinical immune checkpoint inhibitors that are ‘game-changers’ for cancer immunotherapy. Here we show that eEF2K, an atypical protein kinase that negatively modulates the elongation stage of protein synthesis, promotes the synthesis of PD-L1, an immune checkpoint protein which helps cancer cells to escape from immunosurveillance. Ablation of eEF2K in prostate and lung cancer cells markedly reduced the expression levels of the PD-L1 protein. We show that eEF2K promotes the association of PD-L1 mRNAs with translationally active polyribosomes and that translation of the PD-L1 mRNA is regulated by a uORF (upstream open reading-frame) within its 5’-UTR (5’-untranslated region) which starts with a non-canonical CUG as the initiation codon. This inhibitory effect is attenuated by eEF2K thereby allowing higher levels of translation of the PD-L1 coding region and enhanced expression of the PD-L1 protein. Moreover, eEF2K-depleted cancer cells are more vulnerable to immune attack by natural killer cells. Therefore, control of translation elongation can modulate the translation of this specific mRNA, one which contains an uORF that starts with CUG, and perhaps others that contain a similar feature. Taken together, our data reveal that eEF2K regulates PD-L1 expression at the level of the translation of its mRNA by virtue of a uORF in its 5’-region. This, and other roles of eEF2K in cancer cell biology (e.g., in cell survival and migration), may be exploited for the design of future therapeutic strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.