This is a tutorial on some basic non-asymptotic methods and concepts in random matrix theory. The reader will learn several tools for the analysis of the extreme singular values of random matrices with independent rows or columns. Many of these methods sprung off from the development of geometric functional analysis since the 1970's. They have applications in several fields, most notably in theoretical computer science, statistics and signal processing. A few basic applications are covered in this text, particularly for the problem of estimating covariance matrices in statistics and for validating probabilistic constructions of measurement matrices in compressed sensing. These notes are written particularly for graduate students and beginning researchers in different areas, including functional analysts, probabilists, theoretical statisticians, electrical engineers, and theoretical computer scientists.
The Kaczmarz method for solving linear systems of equations is an iterative algorithm that has found many applications ranging from computer tomography to digital signal processing. Despite the popularity of this method, useful theoretical estimates for its rate of convergence are still scarce. We introduce a randomized version of the Kaczmarz method for consistent, overdetermined linear systems and we prove that it converges with expected exponential rate. Furthermore, this is the first solver whose rate does not depend on the number of equations in the system. The solver does not even need to know the whole system but only a small random part of it. It thus outperforms all previously known methods on general extremely overdetermined systems. Even for moderately overdetermined systems, numerical simulations as well as theoretical analysis reveal that our algorithm can converge faster than the celebrated conjugate gradient algorithm. Furthermore, our theory and numerical simulations confirm a prediction of Feichtinger et al. in the context of reconstructing bandlimited functions from nonuniform sampling.
We prove two basic conjectures on the distribution of the smallest singular value of random n×n matrices with independent entries. Under minimal moment assumptions, we show that the smallest singular value is of order n −1/2 , which is optimal for Gaussian matrices. Moreover, we give a optimal estimate on the tail probability. This comes as a consequence of a new and essentially sharp estimate in the LittlewoodOfford problem: for i.i.d. random variables X k and real numbers a k , determine the probability p that the sum k a k X k lies near some number v. For arbitrary coefficients a k of the same order of magnitude, we show that they essentially lie in an arithmetic progression of length 1/p. Published by Elsevier Inc.
This paper improves upon best-known guarantees for exact reconstruction of a sparse signal f from a small universal sample of Fourier measurements. The method for reconstruction that has recently gained momentum in the sparse approximation theory is to relax this highly nonconvex problem to a convex problem and then solve it as a linear program. We show that there exists a set of frequencies such that one can exactly reconstruct every r-sparse signal f of length n from its frequencies in , using the convex relaxation, and has size k.r; n/ D O.r log.n/ log 2 .r/ log.r log n// D O.r log 4 n/:A random set satisfies this with high probability. This estimate is optimal within the log log n and log 3 r factors. We also give a relatively short argument for a similar problem with k.r; n/ rOE12 C 8 log.n=r/ Gaussian measurements. We use methods of geometric functional analysis and probability theory in Banach spaces, which makes our arguments quite short.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.