Machine learning (ML) is a growing field that provides tools for automatic pattern recognition. The neuroimaging community currently tries to take advantage of ML in order to develop an auxiliary diagnostic tool for schizophrenia diagnostics. In this letter, we present a classification framework based on features extracted from magnetic resonance imaging (MRI) data using two automatic whole-brain morphometry methods: voxel-based (VBM) and deformation-based morphometry (DBM). The framework employs a random subspace ensemble-based artificial neural network classifier—in particular, a multilayer perceptron (MLP). The framework was tested on data from first-episode schizophrenia patients and healthy controls. The experiments differed in terms of feature extraction methods, using VBM, DBM, and a combination of both morphometry methods. Thus, features of different types were available for model adaptation. As we expected, the combination of features increased the MLP classification accuracy up to 73.12%—an improvement of 5% versus MLP-based only on VBM or DBM features. To further verify the findings, other comparisons using support vector machines in place of MLPs were made within the framework. However, it cannot be concluded that any classifier was better than another.
The proportion of multi-symptom allergies increased while single-symptom forms decreased. The observed temporal trends of allergic symptoms correspond to the atopic march. What is Known: • The observed temporal trends of allergic symptoms correspond to the atopic march. What is New: • Allergic diseases in children were first manifested as single forms, with atopic dermatitis (AD) commonly functioning as the "entry point" to allergies. • The overall proportion of single-symptom allergic disorders decreased over time while the proportion of multi-symptom allergies increased.
Abstract-Computer-aided schizophrenia diagnosis is a difficult task that has been developing for last decades. Since traditional classifiers have not reached sufficient sensitivity and specificity, another possible way is combining the classifiers in ensembles. In this paper, we take advantage of random subspace ensemble method and combine it with multi-layer perceptron (MLP) and support vector machines (SVM). Our experiment employs voxel-based morphometry to extract the grey matter densities from 52 images of first-episode schizophrenia patients and 52 healthy controls. MLP and SVM are adapted on random feature vectors taken from predefined feature pool and the classification results are based on their voting. Random feature ensemble method improved prediction of schizophrenia when short input feature vector (100 features) was used, however the performance was comparable with single classifiers based on bigger input feature vector (1000 and 10000 features).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.