Tuberculosis (TB) kills more individuals in the world than any other disease, and a threat made direr by the coverage of drug-resistant strains of Mycobacterium tuberculosis (Mtb). Bacillus Calmette–Guérin (BCG) is the single TB vaccine licensed for use in human beings and effectively protects infants and children against severe military and meningeal TB. We applied advanced computational techniques to develop a universal TB vaccine. In the current study, we select the very conserved, experimentally confirmed Mtb antigens, including Rv2608, Rv2684, Rv3804c (Ag85A), and Rv0125 (Mtb32A) to design a novel multi-epitope subunit vaccine. By using the Immune Epitopes Database (IEDB), we predicted different B-cell and T-cell epitopes. An adjuvant (Griselimycin) was also added to vaccine construct to improve its immunogenicity. Bioinformatics tools were used to predict, refined, and validate the 3D structure and then docked with toll-like-receptor (TLR-3) using different servers. The constructed vaccine was used for further processing based on allergenicity, antigenicity, solubility, different physiochemical properties, and molecular docking scores. The in silico immune simulation results showed significant response for immune cells. For successful expression of the vaccine in E. coli, in-silico cloning and codon optimization were performed. This research also sets out a good signal for the design of a peptide-based tuberculosis vaccine. In conclusion, our findings show that the known multi-epitope vaccine may activate humoral and cellular immune responses and maybe a possible tuberculosis vaccine candidate. Therefore, more experimental validations should be exposed to it.
Polydactyly or polydactylism, also known as a hyperdactyly, is a congenital limb defect with various morphologic phenotypes. Apart from physical and functional impairments, the presence of polydactyly is an indication of an underlying syndrome in the newborn. Usually, it follows as an autosomal dominant/recessive inheritance pattern with defects in the limb development's anteroposterior patterning. Although mutations in several genes have been associated with polydactyly; however, the exact underlying cause, pathways, and disease mechanisms are still unexplored, thus making it of multi-factorial origin. Polydactyly is divided into three subtypes; radial, ulnar, and central polydactyly. So far, 11 loci (PAPA1-PAPA11) and seven human
Neurodevelopmental disorders (NDDs) are classified as a group of disorders affecting function and development of the brain and having wide clinical variability. Herein, we describe two affected individuals segregating a recessive NDD. The affected individuals exhibited phenotypes such as global developmental delay (GDD), intellectual disability (ID), microcephaly and speech delay. Wholeexome sequencing (WES) followed by bidirectional Sanger sequencing techniques identified a homozygous nonsense variant (c.466C > T; p.Gln156*) in the PPFIBP1 gene (NM_003622.4) that segregated with the disease phenotype.Further, to elucidate the effect of the variant on protein structure, 3D protein Abbreviations: GDD, global developmental delay; ID, intellectual disability; NIPT, noninvasive prenatal testing; PGTA, preimplantation genetic testing for aneuploidies; PPFIBP1, protein-tyrosine phosphatase receptor-type F polypeptide-interacting protein-binding protein 1; SAM, sterile alpha motif; WES, whole-exome sequencing.Ahmed Waqas and Romana Liaqat contributed equally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.