It has been established that ZFP36 (also known as Tristetraprolin or TTP) promotes mRNA degradation of proteins involved in inflammation, proliferation and tumor invasiveness. In mammary epithelial cells ZFP36 expression is induced by STAT5 activation during lactogenesis, while in breast cancer ZFP36 expression is associated with lower grade and better prognosis.Here, we show that the AP-1 transcription factor components, i.e. JUN, JUNB, FOS, FOSB, in addition to DUSP1, EGR1, NR4A1, IER2 and BTG2, behave as a conserved co-regulated group of genes whose expression is associated to ZFP36 in cancer cells. In fact, a significant down-modulation of this gene network is observed in breast, liver, lung, kidney, and thyroid carcinomas compared to their normal counterparts. In breast cancer, the normal-like and Luminal A, show the highest expression of the ZFP36 gene network among the other intrinsic subtypes and patients with low expression of these genes display poor prognosis. It is also proposed that AP-1 regulates ZFP36 expression through responsive elements detected in the promoter region of this gene. Culture assays show that AP-1 activity induces ZFP36 expression in mammary cells in response to prolactin (PRL) treatment thorough ERK1/2 activation. These results suggest that JUN, JUNB, FOS and FOSB are not only co-expressed, but would also play a relevant role in regulating ZFP36 expression in mammary epithelial cells.
In previous studies, we identified rhomboid domain containing 2 (RHBDD2) gene to be markedly overexpressed in breast cancer patients that developed recurrence of the disease. In this study, we evaluated for the first time RHBDD2 gene expression in colorectal cancer (CRC). Five public available DNA microarray studies were compiled in a homogeneous dataset of 906 colorectal samples. The statistical analysis of these data showed a significant increase of RHBDD2 expression in the advanced stages of CRC (p < 0.01). We validated these findings by immunohistochemistry on 130 colorectal tissue samples; RHBDD2 protein overexpression was also observed in the advanced stages of the disease (p < 0.001). In addition, we investigated RHBDD2 expression in response to the chemotherapy agent 5-fluorouracile (5FU). We detected a significant increase of RHBDD2 mRNA and protein after 5FU treatment (20-40 μM; p < 0.001). Overall, these results showed that RHBDD2 overexpression might play a role in colorectal cancer progression.
Long intergenic non-protein coding RNA 885 (LINC00885) was identified as significantly upregulated in breast ductal carcinoma in situ (DCIS). The aim of this study was to characterize the phenotypic effects and signaling pathways modulated by LINC00885 in non-invasive and invasive breast cancer models. We determined that LINC00885 induces premalignant phenotypic changes by increasing cell proliferation, motility, migration and altering 3D growth in normal and DCIS breast cell lines. Transcriptomic studies (RNA-seq) identified the main signaling pathways modulated by LINC00885, which include bioprocesses related to TP53 signaling pathway and proliferative signatures such as activation of EREG, EGFR and FOXM1 pathways. LINC00885 silencing in breast cancer lines overexpressing this lncRNA leads to downregulation of proliferation related transcripts such as EREG, CMYC, CCND1 and to significant decrease in cell migration and motility. TCGA-BRCA data analyses show an association between high LINC00885 expression and worse overall survival in patients with primary invasive breast carcinomas (p = 0.024), suggesting that the pro-tumorigenic effects of LINC00885 overexpression persist post-invasion. We conclude that LINC00885 behaves as a positive regulator of cell growth both in normal and DCIS breast cells possibly operating as a ceRNA and representing a novel oncogenic lncRNA associated with early stage breast cancer progression.
Rhomboid is an evolutionary conserved and functionally diversified group of proteins composed of proteolytically active and inactive members that are involved in the modulation of multiple biological processes such as epidermal growth factor receptor signaling pathway, endoplasmic reticulum-associated degradation, cell death, and proliferation. Recently, several human rhomboid genes have been associated with the development of chronic myeloid leukemia and pituitary, colorectal, ovarian, and breast cancers. In this study, we evaluated the mRNA and protein expression profiles of rhomboid genes in cancer cell lines and breast tissue/tumor samples. In silico analysis of publicly available gene expression datasets showed that different rhomboid genes are specifically expressed according to the breast cancer intrinsic subtypes. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis showed a significant RHBDD2 mRNA overexpression in advanced breast cancer compared with normal tissue samples (p = 0.012). In addition, we found that RHBDL2 and PARL mRNA expression was associated with a low/intermediate histologic tumor grade (p = 0.024 and p = 0.015, respectively). Immunohistochemistry analysis showed a significant increase of RHBDD2 protein expression in association with breast cancer samples negative for progesterone receptor (p = 0.015). Moreover, protein expression analysis corroborated the quantitative RT-PCR results, indicating that breast primary tumors belonging to patients with a more disseminated disease expressed significantly increased levels of RHBDD2 protein compared with less disseminated tumors (p = 0.01).
Rhomboid domain containing 2 (RHBDD2) was previously observed overexpressed and amplified in breast cancer samples. In order to identify biological pathways modulated by RHBDD2, gene expression profiles of RHBDD2 silenced breast cancer cells were analyzed using whole genome human microarray. Among the statistically significant overrepresented biological processes, we found protein metabolism-with the associated ontological terms folding , ubiquitination , and proteosomal degradation-cell death, cell cycle, and oxidative phosphorylation. In addition, we performed an in silico analysis searching for RHBDD2 co-expressed genes in several human tissues. Interestingly, the functional analysis of these genes showed similar results to those obtained with the microarray data, with negative regulation of protein metabolism and oxidative phosphorylation as the most enriched gene ontology terms. These data led us to hypothesize that RHBDD2 might be involved in endoplasmic reticulum (ER) stress response. Thus, we specifically analyzed the unfolding protein response (UPR) of the ER stress process. We used a lentivirus-based approach for stable silencing of RHBDD2 mRNA in the T47D breast cancer cell line, and we examined the transcriptional consequences on UPR genes as well as the phenotypic effects on migration and proliferation processes. By employing dithiothreitol as an UPR inducer, we observed that cells with silenced RHBDD2 showed increased expression of ATF6, IRE1, PERK, CRT, BiP, ATF4, and CHOP (p <0.01). We also observed that RHBDD2 silencing inhibited colony formation and decreased cell migration. Based on these studies, we hypothesize that RHBDD2 overexpression in breast cancer could represent an adaptive phenotype to the stressful tumor microenvironment by modulating the ER stress response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.