Missense point mutations in Gas3/PMP22 are responsible for the peripheral neuropathies Charcot-MarieTooth 1A and Dejerine Sottas syndrome. These mutations induce protein misfolding with the consequent accumulation of the proteins in the endoplasmic reticulum and the formation of aggresomes. During folding, Gas3/PMP22 associates with the lectin chaperone calnexin. Here, we show that calnexin interacts with the misfolded transmembrane domains of Gas3/PMP22, fused to green fluorescent protein, in a glycan-independent manner. In addition, photobleaching experiments in living cells revealed that Gas3/PMP22-green fluorescent protein mutants are mobile but diffuse at almost half the diffusion coefficient of wild type protein. Our results support emerging models for a glycan-independent chaperone role for calnexin and for the mechanism of retention of misfolded membrane proteins in the endoplasmic reticulum.
Growth arrest specific 3 (Gas3)/peripheral myelin protein 22 (PMP22) is a component of the compact peripheral nerve myelin, and mutations affecting gas3/PMP22 gene are responsible for a group of peripheral neuropathies in humans. We have performed in vivo imaging in order to investigate in detail the phenotype induced by Gas3/PMP22 overexpression in cultured cells. Here we show that Gas3/PMP22 triggers the accumulation of vacuoles, before the induction of cell death or of changes in cell spreading. Overexpressed Gas3/PMP22 accumulates into two distinct types of intracellular membrane compartments. Gas3/PMP2 accumulates within late endosomes close to the juxtanuclear region, whereas in the proximity of the cell periphery, it induces the formation of actin/phosphatidylinositol (4,5)-bisphosphate(PIP2)-positive large vacuoles. Gas3/PMP22-induced vacuoles do not contain transferrin receptor, but instead they trap membrane proteins that normally traffic through the ADP-ribosylation factor 6 (Arf6) endosomal compartment. Arf6 and Arf6-Q67L co-localize with Gas3/PMP22 in these vacuoles,and the dominant negative mutant of Arf6, T27N, blocks the appearance of vacuoles in response to Gas3/PMP22, but not its accumulation in the late endosomes. Finally a point mutant of Gas3/PMP22 responsible for the Charcot-Marie-Tooth 1A disease is unable to trigger the accumulation of PIP2-positive vacuoles. Altogether these results suggest that increased Gas3/PMP22 levels can alter membrane traffic of the Arf6 plasma-membrane–endosomal recycling pathway and show that, similarly to other tetraspan proteins, Gas3/PMP22 can accumulate in the late endosomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.