Optimal nitrogen (N) management is essential for profitable vegetable crop production and to minimize N losses to the environment that are a consequence of an excessive N supply. Proximal optical sensors placed in contact with or close to the crop can provide a rapid assessment of a crop N status. Three types of proximal optical sensors (chlorophyll meters, canopy reflectance sensors, and fluorescence-based flavonols meters) for monitoring the crop N status of vegetable crops are reviewed, addressing practical caveats and sampling considerations and evaluating the practical use of these sensors for crop N management. Research over recent decades has shown strong relationships between optical sensor measurements, and different measures of crop N status and of yield of vegetable species. However, the availability of both: (a) Sufficiency values to assess crop N status and (b) algorithms to translate sensor measurements into N fertilizer recommendations are limited for vegetable crops. Optical sensors have potential for N management of vegetable crops. However, research should go beyond merely diagnosing crop N status. Research should now focus on the determination of practical fertilization recommendations. It is envisaged that the increasing environmental and societal pressure on sustainable crop N management will stimulate progress in this area.
Intensive vegetable production is commonly associated with excessive nitrogen (N) fertilization and associated environmental problems. Monitoring of crop N status can enhance crop N management. Chlorophyll meters (CMs) could be used to monitor crop N status because leaf chlorophyll (chl) content is strongly related to crop N status. To monitor crop N status, relationships between CM measurements and leaf chl content require evaluation, particularly when excessive N is supplied. The SPAD-502 meter, atLEAF+ sensor, MC-100 Chlorophyll Concentration Meter, and Multiplex sensor were evaluated in sweet pepper with different N supply, throughout the crop, ranging from very deficient to very excessive. CM measurements of all sensors and indices were strongly and positively related to leaf chlorophyll a + b content with curvilinear relationships over the entire range of chl measured (∼0–80 μg cm-2). Measurements with the SPAD-502, and atLEAF+, and of the Multiplex’s simple fluorescence ratio index (SFR) had asymptotic responses to increasing leaf chl. In contrast, the MC-100’s chlorophyll content index (CCI) had a progressively increasing response. At higher chlorophyll a + b contents (e.g., >40 μg cm-2), SPAD-502, atLEAF+ and SFR measurements tended to saturate, which did not occur with CCI. Leaf chl content was most accurately estimated by CCI (R2 = 0.87), followed by the SPAD-502 meter (R2 = 0.85). The atLEAF+ sensor was the least accurate (R2 = 0.76). For leaf chl estimation, CCI measured with the MC-100 meter was the most effective of the four sensors examined because it: (1) most accurately estimated leaf chl content, and (2) had no saturation response at higher leaf chl content. For non-saturating leaf chl content (∼0–40 μg cm-2), all indices were sensitive indicators. As excessive applications of N are frequent in intensive vegetable crop production, the capacity of measuring high leaf chl contents without a saturation response is an important consideration for the practical use of chlorophyll meters.
Optical sensors are a promising approach for assessing nitrogen (N) status of vegetable crops. However, their potential may be undermined if time of day influences measurements. This study evaluated the effects of time of day and N addition on measurements, made with two chlorophyll meters, SPAD-502 and MC-100, and two active canopy reflectance sensors, GreenSeeker handheld and Crop Circle ACS-470. Three treatments (N1, deficient, N2, conventional, and N3, excessive N application) of N concentration in the nutrient solution were applied by fertigation throughout a sweet pepper crop grown in soil in a greenhouse. Time of day of 12:00 and 15:00 h had an effect on measurements made with the SPAD-502, but only in the N1 treatment, suggesting that the effects of time of day were related to crop N status. This effect was slight, being 1.7 ± 0.02 SPAD units lower at 12:00 and 15:00 h compared to at 9:00 h (relative decrease of 3.6%). For the MC-100, a slight increase in Chlorophyll Content Index (CCI) values of 3.3 ± 0.1 units (relative increase of 6.3%) was observed at 15:00 and 18:00 h, relative to CCI values at 9:00 h, regardless of N treatment. The time of day effect on chlorophyll meters appears to be negligible in relation to the wide range of values measured in greenhouse-grown sweet pepper. Normalized Difference Vegetation Index, measured both with the GreenSeeker and Crop Circle, and Green Normalized Difference Vegetation Index, measured with the Crop Circle, were not affected by time of day in any of the N treatments, showing that these sensors and indices can be used with confidence at any time of the day.
Chlorophyll meters are promising tools for improving the nitrogen (N) management of vegetable crops. To facilitate on-farm use of these meters, sufficiency values that identify deficient and sufficient crop N status are required. This work evaluated the ability of three chlorophyll meters (SPAD-502, atLEAF+, and MC-100) to assess crop N status in sweet pepper. It also determined sufficiency values for optimal N nutrition for each meter for pepper. The experimental work was conducted in a greenhouse, in Almería, Spain, very similar to those used for commercial production, in three different crops grown with fertigation. In each crop, there were five treatments of different N concentration in the nutrient solution, applied in each irrigation, ranging from a very deficient to very excessive N supply. In general, chlorophyll meter measurements were strongly related to crop N status in all phenological stages of the three crops, indicating that these measurements are good indicators of the crop N status of pepper. Sufficiency values determined for each meter for the four major phenological stages were consistent between the three crops. This demonstrated the potential for using these meters with sufficiency values to improve the N management of commercial sweet pepper crops.
Vegetation indices (VIs) can be useful tools to evaluate crop nitrogen (N) status. To be effective, VIs measurements must be related to crop N status. The nitrogen nutrition index (NNI) is a widely accepted parameter of crop N status. The present work evaluates the performance of several VIs to estimate NNI in sweet pepper (Capsicum annuum). The performance of VIs to estimate NNI was evaluated using parameters of linear regression analysis conducted for calibration and validation. Three different sweet pepper crops were grown with combined irrigation and fertigation, in Almería, Spain. In each crop, five different N concentrations in the nutrient solution were frequently applied by drip irrigation. Proximal crop reflectance was measured with Crop Circle ACS470 and GreenSeeker handheld sensors, approximately every ten days, throughout the crops. The relative performance of VIs differed between phenological stages. Relationships of VIs with NNI were strongest in the early fruit growth and flowering stages, and less strong in the vegetative and harvest stages. The green band-based VIs, GNDVI, and GVI, provided the best results for estimating crop NNI in sweet pepper, for individual phenological stages. GNDVI had the best performance in the vegetative, flowering, and harvest stages, and GVI had the best performance in the early fruit growth stage. Some of the VIs evaluated are promising tools to estimate crop N status in sweet pepper and have the potential to contribute to improving crop N management of sweet pepper crops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.